Adaptation;
curse of dimensionality;
heteroscedasticity;
missing at random;
sharp minimaxity;
ADAPTIVE ESTIMATION;
D O I:
10.1080/10485252.2022.2149749
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
Nonparametric regression with missing at random (MAR) responses, univariate regression component of interest, and the scale function depending on both the predictor and auxiliary covariates, is considered. The asymptotic theory suggests that both heteroscedasticity and MAR mechanism affect the sharp constant of the minimax mean integrated squared error (MISE) convergence. Our sharp minimax procedure is based on the estimation of unknown nuisance scale function, design density and availability likelihood. The estimator is adaptive to the missing mechanism and unknown smoothness of the estimated regression function. Simulation studies and real examples also justify practical feasibility of the proposed method for this complex regression setting.
机构:
Jiangsu Univ Technol, Dept Stat, Changzhou, Peoples R ChinaJiangsu Univ Technol, Dept Stat, Changzhou, Peoples R China
Ding, Xianwen
Xie, Jinhan
论文数: 0引用数: 0
h-index: 0
机构:
Yunnan Univ, Key Lab Stat Modeling & Data Anal Yunnan Prov, Kunming, Yunnan, Peoples R ChinaJiangsu Univ Technol, Dept Stat, Changzhou, Peoples R China
Xie, Jinhan
Yan, Xiaodong
论文数: 0引用数: 0
h-index: 0
机构:
Shandong Univ, Zhongtai Secur Inst Financial Studies, Jinan, Peoples R ChinaJiangsu Univ Technol, Dept Stat, Changzhou, Peoples R China
机构:
Univ Regina, Dept Math & Stat, Coll West 307-14, Regina, SK S4S 0A2, CanadaUniv Regina, Dept Math & Stat, Coll West 307-14, Regina, SK S4S 0A2, Canada
Thiessen, David Luke
Zhao, Yang
论文数: 0引用数: 0
h-index: 0
机构:
Univ Regina, Dept Math & Stat, Coll West 307-14, Regina, SK S4S 0A2, CanadaUniv Regina, Dept Math & Stat, Coll West 307-14, Regina, SK S4S 0A2, Canada
Zhao, Yang
Tu, Dongsheng
论文数: 0引用数: 0
h-index: 0
机构:
Queens Univ, Dept Math & Stat, Kingston, ON, CanadaUniv Regina, Dept Math & Stat, Coll West 307-14, Regina, SK S4S 0A2, Canada