Multi-chimera states in a higher order network of FitzHugh-Nagumo oscillators

被引:45
|
作者
Wang, Zhen [1 ,2 ]
Chen, Mingshu [3 ]
Xi, Xiaojian [2 ]
Tian, Huaigu [2 ]
Yang, Rui [2 ]
机构
[1] Yanan Univ, Sch Math & Comp Sci, Yanan 716000, Peoples R China
[2] Xijing Univ, Shaanxi Int Joint Res Ctr Appl Technol Controllabl, Xian 710123, Peoples R China
[3] Xian Univ Technol, Sch Elect Engn, Xian 710061, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
PHASE SYNCHRONIZATION; MODEL;
D O I
10.1140/epjs/s11734-024-01143-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A chimera state represents a distinct configuration within interconnected oscillatory networks comprising both coherent and incoherent oscillators. In specific scenarios, multiple sets of synchronized systems can coexist, forming what is termed a multi-chimera state. This phenomenon has previously been documented in a network of FitzHugh-Nagumo systems under strong coupling conditions. In this study, we explore the impact of higher order interactions on the manifestation of multi-chimera states and their respective domains. The assessment involves utilizing measures of incoherence and discontinuity. The findings indicate that higher order networks are more prone to exhibiting multi-chimera states. Additionally, complete coherence is achieved with lower first-order coupling strength. Furthermore, the higher order network displays instances of imperfect chimera and imperfect synchronization.
引用
收藏
页码:779 / 786
页数:8
相关论文
共 50 条
  • [21] Scale-free avalanches in arrays of FitzHugh-Nagumo oscillators
    Contreras, Max
    Medeiros, Everton S.
    Zakharova, Anna
    Hoevel, Philipp
    Franovic, Igor
    CHAOS, 2023, 33 (09)
  • [22] Analysis of Two-layer Network of FitzHugh-Nagumo Oscillators with Different Layer Topology
    Nikitin, Denis
    Omelchenko, Iryna
    Zakharova, Anna
    Avetyan, Manuk
    Fradkov, Alexander L.
    Schoell, Eckehard
    IFAC PAPERSONLINE, 2018, 51 (33): : 235 - 240
  • [23] On a Kinetic Fitzhugh-Nagumo Model of Neuronal Network
    Mischler, S.
    Quininao, C.
    Touboul, J.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2016, 342 (03) : 1001 - 1042
  • [24] Numerical bifurcation analysis of two coupled FitzHugh-Nagumo oscillators
    Anderson Hoff
    Juliana V. dos Santos
    Cesar Manchein
    Holokx A. Albuquerque
    The European Physical Journal B, 2014, 87
  • [25] The impact of memristive coupling initial states on travelling waves in an ensemble of the FitzHugh-Nagumo oscillators
    Korneev, I. A.
    Semenov, V. V.
    Slepnev, A. V.
    Vadivasova, T. E.
    CHAOS SOLITONS & FRACTALS, 2021, 147
  • [27] Synchronisation of the ensemble of nonidentical FitzHugh-Nagumo oscillators with memristive couplings
    Navrotskaya, E. V.
    Kurbako, A. V.
    Ponomarenko, V. I.
    Prokhorov, M. D.
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENIY-PRIKLADNAYA NELINEYNAYA DINAMIKA, 2024, 32 (01): : 96 - 110
  • [28] Feedback controller for destroying synchrony in an array of the FitzHugh-Nagumo oscillators
    Tamasevicius, Arunas
    Tamaseviciute, Elena
    Mykolaitis, Gytis
    APPLIED PHYSICS LETTERS, 2012, 101 (22)
  • [29] The study of chaotic and regular regimes of the fractal oscillators FitzHugh-Nagumo
    Lipko, Olga
    Parovik, Roman
    IX INTERNATIONAL CONFERENCE SOLAR-TERRESTRIAL RELATIONS AND PHYSICS OF EARTHQUAKE PRECURSORS, 2018, 62
  • [30] Applications of optimal nonlinear control to a whole-brain network of FitzHugh-Nagumo oscillators
    Chouzouris, Teresa
    Roth, Nicolas
    Cakan, Caglar
    Obermayer, Klaus
    PHYSICAL REVIEW E, 2021, 104 (02)