Fabrication and High-temperature Electrochemical Stability of LiFePO4 Cathode/Li3PO4 Electrolyte Interface

被引:0
|
作者
Kang, Dongho [1 ]
Ito, Kotaro [1 ]
Shimizu, Keisuke [2 ]
Watanabe, Kenta [1 ,2 ]
Matsui, Naoki [1 ,2 ]
Suzuki, Kota [1 ,2 ]
Kanno, Ryoji [2 ]
Hirayama, Masaaki [1 ,2 ]
机构
[1] Tokyo Inst Technol, Sch Mat & Chem Technol, Dept Chem Sci & Engn, 4259 Nagatsuta,Midori Ku, Yokohama 2268502, Japan
[2] Tokyo Inst Technol, Inst Innovat Res, Res Ctr All Solid State Battery, 4259 Nagatsuta,Midori ku, Yokohama 2268502, Japan
基金
日本学术振兴会;
关键词
All Solid-state Battery; Olivine-type Cathode; Amorphous Li3PO4 Electrolyte; Thin-film Battery; LITHIUM IRON PHOSPHATE; LI-ION BATTERIES; THIN-FILMS; NANOPARTICLES; CARBON; MORPHOLOGY; CATHODES; LICOO2; PTSI;
D O I
10.5796/electrochemistry.24-00017
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
A thin-film battery composed of a LiFePO4 cathode/Li3PO4 electrolyte/Li anode was fabricated on a Pt/Ti/Si (PTS) substrate via RF magnetron sputtering. The amorphous Li3PO4 film was densely stacked on a 60 nm-thick LiFePO4 film, which provided a suitable reaction field for understanding the electrochemical properties of LiFePO4 at the interface with the solid electrolyte. The LiFePO4 cathode film exhibited highly reversible lithium desertion/insertion at the interface at room temperature and 60 degrees C, without any side reactions. An irreversible oxidation reaction occurred during the initial charging process at 100 degrees C, leading to an increase in the charge-transfer resistance of the LiFePO4/Li3PO4 interface with no significant decrease in the lithium desertion/insertion capacity of LiFePO4. This result suggests the formation of a resistive interphase via the decomposition of Li3PO4 at 100 degrees C. A severe decrease in capacity is observed at 125 degrees C, which indicates the LiFePO4-side interface contributed to the side reactions. The film battery exhibits a severe decrease in capacity at 125 degrees C.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] High temperature electrochemical performance of nanosized LiFePO4
    Mestre-Aizpurua, F.
    Hamelet, S.
    Masquelier, C.
    Palacin, M. R.
    JOURNAL OF POWER SOURCES, 2010, 195 (19) : 6897 - 6901
  • [32] Raman Spectroscopy of LiFePO4 and Li3V2(PO4)3 Prepared as Cathode Materials
    Ziolkowska, D.
    Korona, K. P.
    Kaminska, M.
    Grzanka, E.
    Andrzejczuk, M.
    Wu, S. -H.
    Chen, M. -S.
    ACTA PHYSICA POLONICA A, 2011, 120 (05) : 973 - 975
  • [33] Comparative studies of the electronic structure of LiFePO4, FePO4, Li3PO4, LiMnPO4, LiCoPO 4, and LiNiPO4
    Ching, W.Y. (chingw@umkc.edu), 1600, American Institute of Physics Inc. (95):
  • [34] Structural properties of composite cathode material LiFePO4–Li3V2(PO4)3
    Bao Zhang
    Jun-chao Zheng
    Zhan-hong Yang
    Ionics, 2011, 17 : 859 - 862
  • [35] Electrochemical performance of LiFePO4 cathode material for Li-ion battery
    LI Shuzhong1)
    RareMetals, 2006, (S1) : 62 - 66
  • [36] Electrochemical performance of LiFePO4 cathode material for Li-ion battery
    Li Shuzhong
    Li Chao
    Fan Yanliang
    Xu Jiaqiang
    Wang Tao
    Yang Shuting
    RARE METALS, 2006, 25 : 62 - 66
  • [37] Li3PO4的生成条件研究及其对LiFePO4正极材料性能的影响
    方秀利
    朱玲玲
    陆仁杰
    孙兵
    杨继明
    河南化工, 2024, 41 (02) : 14 - 17+21
  • [38] Interdiffusion suppression at the cathode-electrolyte interface of all-solid-state-batteries by Li3PO4 conformal coating
    Kim, Jongheon
    Ku, Miju
    Kim, Sunmin
    Yang, Hwichul
    Lee, Daye
    Lee, Hansam
    Kim, Young-Beom
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2024, 107 (05) : 3134 - 3145
  • [39] Crystalline Li3Po4/Li4SiO4 solid solutions as an electrolyte for film batteries using sputtered cathode layers
    Whitacre, JF
    West, WC
    SOLID STATE IONICS, 2004, 175 (1-4) : 251 - 255
  • [40] SYNTHESIS AND PROPERTIES OF Li3PO4 NANOCRYSTALS AND TRANSPARENT BULK Li3PO4/PMMA
    Ma, Yong-sheng
    Gu, Mu
    Huang, Shi-ming
    Liu, Xiao-lin
    Liu, Bo
    Ni, Chen
    ACTA POLYMERICA SINICA, 2013, (08) : 1020 - 1024