Nanostructured spinel high-entropy oxide (Fe0.2Mn0.2Co0.2Ni0.2Zn0.2)3O4 as a potential cathode for solid oxide fuel cells

被引:26
|
作者
Lin, Zhuang [1 ]
Ma, Ben [2 ,3 ]
Chen, Zhaohui [1 ]
Zhou, Yingke [3 ]
机构
[1] Wuhan Univ Sci & Technol, Collaborat Innovat Ctr Adv Steels, Wuhan 430081, Peoples R China
[2] Wuhan Univ Sci & Technol, Coll Sci, Wuhan 430081, Peoples R China
[3] Wuhan Univ Sci & Technol, Inst Adv Mat & Nanotechnol, State Key Lab Refractories & Met, Wuhan 430081, Peoples R China
基金
中国国家自然科学基金;
关键词
Fuel cells; Impedance; Electrical conductivity; High-entropy oxide; COMPOSITE CATHODES; PEROVSKITE OXIDES; PERFORMANCE; ELECTRODE; LA; NI;
D O I
10.1016/j.ceramint.2023.04.131
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Commercial use of solid oxide fuel cells (SOFCs) requires high output performance and excellent long-term stability for cathode materials. A nanostructured spinel high-entropy oxide (Fe0.2Mn0.2Co0.2Ni0.2Zn0.2)3O4 (FMCNZ) is developed as the SOFC cathode using an impregnation method. FMCNZ nanoparticles are distributed uniformly and infiltrated into a network on the Gd0.1Ce0.9O1.95 (GDC) skeleton by modifying the impregnation content. The polarization resistance of FMCNZ with 40 wt% impregnation loading shows a minimum value of 0.018 & omega; cm2 at 800 degrees C, which is around one-third of that for the typical Ni0.2Fe0.8Co2O4 spinel cathode with the same preparation processing. The excellent oxygen reduction reaction (ORR) is primarily attributed to the di-versity of surface metal cations and the population increase of surface oxygen vacancies brought on by the high entropy design. The analysis of ORR kinetics based on the distribution of relaxation time (DRT) method reveals that the species exchange process at the electrode surface is a rate-determining step, which probably originated from the low electronic conductivity of FMCNZ. The SOFC with the nanostructured FMCNZ cathode reaches a maximum power density of 1080 mW cm-2 at 800 degrees C. Additionally, the nanostructures of the cathode barely change after 100 h of cell operation at 750 degrees C. Thus, our findings provide a novel and promising path for developing high-performance cathodes by integrating a high-entropy design strategy with the construction of nanostructured materials.
引用
收藏
页码:23057 / 23067
页数:11
相关论文
共 50 条
  • [21] Weak ferromagnetism in Tb(Fe0.2Mn0.2Co0.2Cr0.2Ni0.2)O3 high-entropy oxide perovskite thin films
    Farhan, Alan
    Stramaglia, Federico
    Cocconcelli, Maria
    Kuznetsov, Nikolai
    Yao, Lide
    Kleibert, Armin
    Piamonteze, Cinthia
    van Dijken, Sebastiaan
    PHYSICAL REVIEW B, 2022, 106 (06)
  • [22] High-entropy oxide Mg0.2Co0.2Fe0.2Ni0.2Zn0.2O: synthesis, X-ray diffraction and Mossbauer studies
    Musin, V. F.
    Zinnatullin, A. L.
    Vagizov, F. G.
    MAGNETIC RESONANCE IN SOLIDS, 2024, 26 (03)
  • [23] The effect of sodium content on sodium diffusion in NaxTi0.2Mn0.2Fe0.2Co0.2Ni0.2O2 high-entropy layered oxide
    Tsydypylov, Dmitry Z.
    Slobodyuk, Arseny B.
    Kirsanova, Maria A.
    Kosova, Nina V.
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2025,
  • [24] Construction of spinel (Fe0.2Co0.2Ni0.2Cr0.2M0.2)3O4 (M = Mg, Mn, Zn, and Cu) high-entropy oxides with tunable valance states for oxygen evolution reaction
    Guo, Yuanxi
    Zhang, Xinxin
    Wei, Hehe
    Yu, Hai-tao
    Xie, Ying
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 989
  • [25] Rapid microwave-assisted synthesis and magnetic properties of high-entropy spinel (Cr0.2Mn0.2Fe0.2Co0.2-xNi0.2Znx)3O4 nanoparticles
    Minouei, Hossein
    Jalaly, Maisam
    Kheradmandfard, Mehdi
    Rizi, Mohsen Saboktakin
    Kim, Dae-Eun
    Hong, Sun Ig
    CERAMICS INTERNATIONAL, 2023, 49 (08) : 11885 - 11892
  • [26] Epitaxial growth and magnetic characterization of orthorhombic Ho (Ni 0.2 Co 0.2 Fe 0.2 Mn 0.2 Cr 0.2 )O 3 high-entropy oxide perovskite thin films
    Regmi, Balaram
    Cocconcelli, Maria
    Miertschin, Duncan
    Panchal, Gyanendra
    Kandel, Poshan
    Pandey, Krishna
    Ogunniranye, Isaac
    Mueller, Ryan
    Yao, Lide
    Valvidares, Manuel
    van Dijken, Sebastiaan
    Farhan, Alan
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2025, 613
  • [27] Lattice distortion and stability of (Co0.2Cu0.2Mg0.2Ni0.2Zn0.2)O high-entropy oxide under high pressure
    Cheng, B.
    Lou, H.
    Sarkar, A.
    Zeng, Z.
    Zhang, F.
    Chen, X.
    Tan, L.
    Glazyrin, K.
    Liermann, H. -P.
    Yan, J.
    Wang, L.
    Djenadic, R.
    Hahn, H.
    Zeng, Q.
    MATERIALS TODAY ADVANCES, 2020, 8
  • [28] High entropy spinel oxide (Ni0.2Co0.2Zn0.2Cu0.2Mg0.2)Fe2O4 nanofibers for efficient oxygen evolution reaction
    Zhang, Mengyuan
    Zhou, Xuanyu
    Luo, Kongliang
    Fan, Yaning
    He, Chuandong
    Niu, Qiang
    Zhang, Junjun
    Zhang, Pengfei
    Dai, Sheng
    JOURNAL OF MATERIALS CHEMISTRY A, 2025, 13 (02) : 1287 - 1301
  • [29] Densification of the entropy stabilized oxide (Mg0.2Co0.2Ni0.2Cu0.2Zn0.2)O
    Jacobson, V.
    Gann, K.
    Sanders, M.
    Brennecka, G.
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2022, 42 (10) : 4328 - 4334
  • [30] Preparation and sodium storage properties of spinel-type (Cr0.2Fe0.2Mn0.2Ni0.2Co0.2)3O4/rGO
    Li, Kaixiang
    Li, Huijun
    Zhao, Zhenxin
    Wang, Xiaomin
    CHEMISTRYSELECT, 2024, 9 (11):