Dust accumulation on the surface of photovoltaic (PV) modules significantly reduces the amount of light reaching the cells and can lead to decreased power output and instability of the system. Dust accumulation on solar modules is one of the most significant problems in the use of PV systems in the arid and semi-arid regions. The history of dust accumulation on PV modules, which is back to the early 1980s, was revised. Dust accumulation on solar modules was initially seen as a minor issue, as cleaning the modules was seen as an effective way to combat it. However, over time, it became increasingly clear that dust accumulation was a major issue, particularly in desert regions. Due to the high cost of manual cleaning, research began to focus on the development of automated cleaning systems for PV modules. This paper review and discussed dust effects on glass and transparent materials, effects on mirrors, particle physics and chemistry, mitigation and cleaning, modeling, new prospects and beyond. Research has found that small particles of air (0.3-1 mu m in radius) are the primary source of irradiance scattering. Studies have shown that PV power output is reduced by 42-45% at 50 g/m(2) dust concentration. If solar panels are exposed for a long period of time without being cleaned, the amount of particles smaller than 5 mu m can increase, making PV systems installed in Sohar-Oman less affected by dust particle size. It is clear that PV efficiency can decrease significantly on a monthly basis, up to 80%. Investigations of the dust ingredient and physical properties, such as shape, size, and homogeneity, were conducted utilizing XRD and Microscopic image and used for a generalized model. Finally, it is standardization of certain tests concerning the dust impact on PV has been recommended.