Harnessing Deep Learning for Omics in an Era of COVID-19

被引:2
|
作者
Jahanyar, Bahareh [1 ]
Tabatabaee, Hamid [1 ,3 ]
Rowhanimanesh, Alireza [2 ]
机构
[1] Islamic Azad Univ, Dept Comp Engn, Mashhad Branch, Mashhad, Iran
[2] Univ Neyshabur, Dept Elect Engn, Neyshabur, Iran
[3] Islamic Azad Univ, Dept Comp Engn, Mashhad Branch, Mashhad 9187147578, Iran
关键词
machine learning; deep learning; bioinformatics; precision medicine; multi-omics data; COVID-19; NEURAL-NETWORKS; INTEGRATIVE ANALYSIS; DIMENSION REDUCTION; REGRESSION-MODEL; GENE-EXPRESSION; PREDICTION; SINGLE; CLASSIFICATION; ALGORITHM; SUBTYPES;
D O I
10.1089/omi.2022.0155
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Omics data are multidimensional, heterogeneous, and high throughput. Robust computational methods and machine learning (ML)-based models offer new prospects to accelerate the data-to-knowledge trajectory. Deep learning (DL) is a powerful subset of ML inspired by brain structure and has created unprecedented momentum in bioinformatics and computational biology research. This article provides an overview of the current DL models applied to multi-omics data for both the beginner and the expert user. Additionally, COVID-19 will continue to impact planetary health as a pandemic and an endemic disease, with genomic and multi-omic pathophysiology. DL offers, therefore, new ways of harnessing systems biology research on COVID-19 diagnostics and therapeutics. Herein, we discuss, first, the statistical ML algorithms and essential deep architectures. Then, we review DL applications in multi-omics data analysis and their intersection with COVID-19. Finally, challenges and several promising directions are highlighted going forward in the current era of COVID-19.
引用
收藏
页码:141 / 152
页数:12
相关论文
共 50 条
  • [41] Deep Learning and Classification Algorithms for COVID-19 Detection
    Sidheeque, Mohammed
    Sumathy, P.
    Gafur, Abdul M.
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2022, 13 (09) : 346 - 350
  • [42] Prognosis patients with COVID-19 using deep learning
    Luis Guadiana-Alvarez, Jose
    Hussain, Fida
    Morales-Menendez, Ruben
    Rojas-Flores, Etna
    Garcia-Zendejas, Arturo
    Escobar, Carlos A.
    Ramirez-Mendoza, Ricardo A.
    Wang, Jianhong
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2022, 22 (01)
  • [43] A Deep Learning technology based covid-19 prediction
    Chaitanya, A. Krishna
    Ghadiyaram, Likhitha
    Yoshitha, Puvvala
    Sai, D. Nikhil Vishnu
    PROCEEDINGS OF THE 2021 FIFTH INTERNATIONAL CONFERENCE ON I-SMAC (IOT IN SOCIAL, MOBILE, ANALYTICS AND CLOUD) (I-SMAC 2021), 2021, : 490 - 495
  • [44] COVID-19 diagnosis system by deep learning approaches
    Bhuyan, Hemanta Kumar
    Chakraborty, Chinmay
    Shelke, Yogesh
    Pani, Suvendu Kumar
    EXPERT SYSTEMS, 2022, 39 (03)
  • [45] COVID-19 Automatic Detection Using Deep Learning
    Sanajalwe, Yousef
    Anbar, Mohammed
    Al-E'mari, Salam
    COMPUTER SYSTEMS SCIENCE AND ENGINEERING, 2021, 39 (01): : 15 - 35
  • [46] Deep Learning Hybrid Models for COVID-19 Prediction
    Yu, Ziyue
    He, Lihua
    Luo, Wuman
    Tse, Rita
    Pau, Giovanni
    JOURNAL OF GLOBAL INFORMATION MANAGEMENT, 2022, 30 (10)
  • [47] A Deep Learning Method to Forecast COVID-19 Outbreak
    Satyabrata Dash
    Sujata Chakravarty
    Sachi Nandan Mohanty
    Chinmaya Ranjan Pattanaik
    Sarika Jain
    New Generation Computing, 2021, 39 : 515 - 539
  • [48] Covid-19 analysis by using machine and deep learning
    Yadav D.
    Maheshwari H.
    Chandra U.
    Sharma A.
    Studies in Big Data, 2020, 80 : 31 - 63
  • [49] A hybrid deep transfer learning model with machine learning methods for face mask detection in the era of the COVID-19 pandemic
    Loey, Mohamed
    Manogaran, Gunasekaran
    Taha, Mohamed Hamed N.
    Khalifa, Nour Eldeen M.
    MEASUREMENT, 2021, 167
  • [50] A Deep Learning Approach for Automated COVID-19 Detection
    Singh, Amanpreet
    Singh, Charanjit
    INTERNATIONAL JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING SYSTEMS, 2023, 14 (01) : 93 - 99