A high-order numerical technique for generalized time-fractional Fisher's equation

被引:2
|
作者
Choudhary, Renu [1 ]
Singh, Satpal [1 ]
Kumar, Devendra [1 ]
机构
[1] Birla Inst Technol & Sci, Dept Math, Pilani 333031, Rajasthan, India
关键词
Caputo derivative; compact finite difference scheme; convergence; stability; time-fractional generalized Fisher's equations; SCHEME;
D O I
10.1002/mma.9435
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The generalized time-fractional Fisher's equation is a substantial model for illustrating the system's dynamics. Studying effective numerical methods for this equation has considerable scientific importance and application value. In that direction, this paper presents designing and analyzing a high-order numerical scheme for the generalized time-fractional Fisher's equation. The time-fractional derivative is taken in the Caputo sense and approximated using Euler backward discretization. The quasilinearization technique is used to linearize the problem, and then a compact finite difference scheme is considered for discretizing the equation in space direction. Our numerical method is convergent of O ( k(2-alpha) + h(4)), where h and k are step sizes in spatial and temporal directions, respectively. Three problems are tested numerically by implementing the proposed technique, and the acquired results reveal that the proposed method is suitable for solving this problem.
引用
收藏
页码:16050 / 16071
页数:22
相关论文
共 50 条
  • [31] Exact solutions to conformable time-fractional Klein-Gordon equation with high-order nonlinearities
    Tang, Li
    RESULTS IN PHYSICS, 2020, 18
  • [32] A Second-Order Scheme for the Generalized Time-Fractional Burgers' Equation
    Chawla, Reetika
    Kumar, Devendra
    Singh, Satpal
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2024, 19 (01):
  • [33] A HIGHER-ORDER APPROACH FOR TIME-FRACTIONAL GENERALIZED BURGERS' EQUATION
    Taneja, Komal
    Deswal, Komal
    Kumar, Devendra
    Baleanu, Dumitru
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2023,
  • [34] A high-order compact finite difference scheme and its analysis for the time-fractional diffusion equation
    Roul, Pradip
    Goura, V. M. K. Prasad
    Agarwal, Ravi
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2023, 61 (10) : 2146 - 2175
  • [35] A High-Order Method with a Temporal Nonuniform Mesh for a Time-Fractional Benjamin–Bona–Mahony Equation
    Pin Lyu
    Seakweng Vong
    Journal of Scientific Computing, 2019, 80 : 1607 - 1628
  • [36] A high-order L2 type difference scheme for the time-fractional diffusion equation
    Alikhanov, Anatoly A.
    Huang, Chengming
    APPLIED MATHEMATICS AND COMPUTATION, 2021, 411
  • [37] A high-order compact finite difference scheme and its analysis for the time-fractional diffusion equation
    Pradip Roul
    V. M. K. Prasad Goura
    Ravi Agarwal
    Journal of Mathematical Chemistry, 2023, 61 : 2146 - 2175
  • [38] Investigation of the Time-Fractional Generalized Burgers-Fisher Equation via Novel Techniques
    Alotaibi, Badriah M. M.
    Shah, Rasool
    Nonlaopon, Kamsing
    Ismaeel, Sherif. M. E.
    El-Tantawy, Samir A. A.
    SYMMETRY-BASEL, 2023, 15 (01):
  • [39] A novel high-order numerical scheme and its analysis for the two-dimensional time-fractional reaction-subdiffusion equation
    Pradip Roul
    Vikas Rohil
    Numerical Algorithms, 2022, 90 : 1357 - 1387
  • [40] High-Order Numerical Approximation for 2D Time-Fractional Advection-Diffusion Equation under Caputo Derivative
    Zhang, Xindong
    Chen, Yan
    Wei, Leilei
    FRACTAL AND FRACTIONAL, 2024, 8 (08)