Sparse Bayesian Estimation of Parameters in Linear-Gaussian State-Space Models

被引:3
|
作者
Cox, Benjamin [1 ]
Elvira, Victor [1 ]
机构
[1] Univ Edinburgh, Sch Math, Edinburgh EH9 3FD, Scotland
基金
英国自然环境研究理事会;
关键词
Bayesian methods; graphical inference; Kalman filtering; Markov chain Monte Carlo; parameter estimation; sparsity detection; state-space modelling; REVERSIBLE-JUMP; WEAK-CONVERGENCE; PARTICLE FILTER; SELECTION; ALGORITHM; INFERENCE; DECOMPOSITION; COMPUTATION; LIKELIHOOD;
D O I
10.1109/TSP.2023.3278867
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
State-space models (SSMs) are a powerful statistical tool for modelling time-varying systems via a latent state. In these models, the latent state is never directly observed. Instead, a sequence of data points related to the state are obtained. The linear-Gaussian state-space model is widely used, since it allows for exact inference when all model parameters are known, however this is rarely the case. The estimation of these parameters is a very challenging but essential task to perform inference and prediction. In the linear-Gaussian model, the state dynamics are described via a state transition matrix. This model parameter is known to behard to estimate, since it encodes the relationships between the state elements, which are never observed. In many applications, this transition matrix is sparse since not all state components directly affect all other state components. However, most parameter estimation methods do not exploit this feature. In this work we propose SpaRJ, a fully probabilistic Bayesian approach that obtains sparse samples from the posterior distribution of the transition matrix. Our method explores sparsity by traversing a set of models that exhibit differing sparsity patterns in the transition matrix. Moreover, we also design new effective rules to explore transition matrices within the same level of sparsity. This novel methodology has strong theoretical guarantees, and unveils the latent structure of the data generating process, thereby enhancing interpretability. The performance of SpaRJ is showcased in example with dimension 144 in the parameter space, and in a numerical example with real data.
引用
收藏
页码:1922 / 1937
页数:16
相关论文
共 50 条
  • [41] Gaussian Process State-Space Models with Time-Varying Parameters and Inducing Points
    Liu, Yuhao
    Djuric, Petar M.
    28TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2020), 2021, : 1462 - 1466
  • [42] State inference in variational Bayesian nonlinear state-space models
    Raiko, T
    Tornio, M
    Honkela, A
    Karhunen, J
    INDEPENDENT COMPONENT ANALYSIS AND BLIND SIGNAL SEPARATION, PROCEEDINGS, 2006, 3889 : 222 - 229
  • [43] Approximate Gaussian variance inference for state-space models
    Deka, Bhargob
    Goulet, James-A.
    INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2023, 37 (11) : 2934 - 2962
  • [44] Analysis of a nonlinear importance sampling scheme for Bayesian parameter estimation in state-space models
    Miguez, Joaquin
    Marino, Ines P.
    Vazquez, Manuel A.
    SIGNAL PROCESSING, 2018, 142 : 281 - 291
  • [45] ROBUST STABILITY IN LINEAR STATE-SPACE MODELS
    JIANG, CL
    INTERNATIONAL JOURNAL OF CONTROL, 1988, 48 (02) : 813 - 816
  • [46] A Bayesian state-space formulation of dynamic occupancy models
    Royle, J. Andrew
    Kery, Marc
    ECOLOGY, 2007, 88 (07) : 1813 - 1823
  • [47] Feedback quality adjustment with Bayesian state-space models
    Triantafyllopoulos, K.
    APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY, 2007, 23 (02) : 145 - 156
  • [48] Structured Variational Inference in Bayesian State-Space Models
    Wang, Honggang
    Yang, Yun
    Pati, Debdeep
    Bhattacharya, Anirban
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 151, 2022, 151
  • [49] Bayesian inference in nonparametric dynamic state-space models
    Ghosh, Anurag
    Mukhopadhyay, Soumalya
    Roy, Sandipan
    Bhattacharya, Sourabh
    STATISTICAL METHODOLOGY, 2014, 21 : 35 - 48
  • [50] Estimation of state-space models with endogenous Markov regime-switching parameters
    Kang, Kyu H.
    ECONOMETRICS JOURNAL, 2014, 17 (01): : 56 - 82