Hierarchical Multi-Label Attribute Classification With Graph Convolutional Networks on Anime Illustration

被引:0
|
作者
Lan, Ziwen [1 ]
Maeda, Keisuke [2 ]
Ogawa, Takahiro [2 ]
Haseyama, Miki [2 ]
机构
[1] Hokkaido Univ, Grad Sch Informat Sci & Technol, Sapporo, Japan
[2] Hokkaido Univ, Fac Informat Sci & Technol, Sapporo, Japan
基金
日本学术振兴会;
关键词
Task analysis; Semantics; Image classification; Correlation; Convolutional neural networks; Visualization; Context modeling; Hierarchical classification; anime illustration; attribute classification; graph convolutional networks; image captioning;
D O I
10.1109/ACCESS.2023.3265728
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this study, we present a hierarchical multi-modal multi-label attribute classification model for anime illustrations using graph convolutional networks (GCNs). The focus of this study is multi-label attribute classification, as creators of anime illustrations frequently and deliberately emphasize subtle features of characters and objects. To analyze the connections between attributes, we develop a multi-modal GCN-based model that can use semantic features of anime illustrations. To create features representing the semantic information of anime illustrations, we construct a novel captioning framework by combining real-world images with their animated style transformations. In addition, because the attributes of anime illustrations are hierarchical, we introduce a loss function that considers the hierarchy of attributes to improve classification accuracy. The proposed method has two main contributions: 1) By introducing a GCN with semantic features into the multi-label attribute classification task of anime illustrations, we capture more comprehensive relationships between attributes. 2) By following certain rules to build a hierarchical structure of attributes that appear frequently in anime illustrations, we further capture subordinate relationships between attributes. In addition, we demonstrate the effectiveness of the proposed method by experiments.
引用
收藏
页码:35447 / 35456
页数:10
相关论文
共 50 条
  • [21] An Attention-Driven Multi-label Image Classification with Semantic Embedding and Graph Convolutional Networks
    Dengdi Sun
    Leilei Ma
    Zhuanlian Ding
    Bin Luo
    Cognitive Computation, 2023, 15 : 1308 - 1319
  • [22] Multi-label classification of fundus images based on graph convolutional network
    Yinlin Cheng
    Mengnan Ma
    Xingyu Li
    Yi Zhou
    BMC Medical Informatics and Decision Making, 21
  • [23] Multi-label classification of fundus images with graph convolutional network and LightGBM
    Sun, Kai
    He, Mengjia
    Xu, Yao
    Wu, Qinying
    He, Zichun
    Li, Wang
    Liu, Hongying
    Pi, Xitian
    COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 149
  • [24] Multi-label classification of fundus images based on graph convolutional network
    Cheng, Yinlin
    Ma, Mengnan
    Li, Xingyu
    Zhou, Yi
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2021, 21 (SUPPL 2)
  • [25] A Multi-Label Classification Model Using Convolutional Netural Networks
    Zhang, Guanglei
    Chen, Lei
    Ding, Yongsheng
    2017 29TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2017, : 2151 - 2156
  • [26] Multi-Label Wireless Interference Classification with Convolutional Neural Networks
    Grunau, Sergej
    Block, Dimitri
    Meier, Uwe
    2018 IEEE 16TH INTERNATIONAL CONFERENCE ON INDUSTRIAL INFORMATICS (INDIN), 2018, : 187 - 192
  • [27] Multi-label Logo Classification Using Convolutional Neural Networks
    Gallego, Antonio-Javier
    Pertusa, Antonio
    Bernabeu, Marisa
    PATTERN RECOGNITION AND IMAGE ANALYSIS, PT I, 2020, 11867 : 485 - 497
  • [28] Multi-label Classification of Surgical Tools with Convolutional Neural Networks
    Prellberg, Jonas
    Kramer, Oliver
    2018 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2018,
  • [29] Extreme Multi-label Classification with Hierarchical Multi-task for Product Attribute Identification
    Zhang, Jun
    Cai, Menqian
    Zhao, Chenyu
    Zhang, Xiaowei
    Zhang, Zhiqian
    Chen, Haiheng
    Xu, Sulong
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2022, PT III, 2022, 13282 : 249 - 260
  • [30] Multi-Label Classification with Label Graph Superimposing
    Wang, Ya
    He, Dongliang
    Li, Fu
    Long, Xiang
    Zhou, Zhichao
    Ma, Jinwen
    Wen, Shilei
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 12265 - 12272