Superiority combination learning distributed particle swarm optimization for large-scale optimization

被引:13
|
作者
Wang, Zi-Jia [1 ]
Yang, Qiang [2 ]
Zhang, Yu -Hui [3 ]
Chen, Shu-Hong [1 ]
Wang, Yuan -Gen [1 ]
机构
[1] Guangzhou Univ, Sch Comp Sci & Cyber Engn, Guangzhou 510006, Peoples R China
[2] Nanjing Univ Informat Sci & Technol, Sch Artificial Intelligence, Nanjing 210044, Peoples R China
[3] Dongguan Univ Technol, Sch Comp Sci & Technol, Dongguan, Peoples R China
关键词
Superiority combination learning strategy; Particle swarm optimization; Large-scale optimization; Master-slave multi-subpopulation; distributed; COOPERATIVE COEVOLUTION; EVOLUTIONARY;
D O I
10.1016/j.asoc.2023.110101
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Large-scale optimization problems (LSOPs) have become increasingly significant and challenging in the evolutionary computation (EC) community. This article proposes a superiority combination learning distributed particle swarm optimization (SCLDPSO) for LSOPs. In algorithm design, a master-slave multi-subpopulation distributed model is adopted, which can obtain the full communication and information exchange among different subpopulations, further achieving the diversity enhancement. Moreover, a superiority combination learning (SCL) strategy is proposed, where each worse particle in the poor-performance subpopulation randomly selects two well-performance subpopulations with better particles for learning. In the learning process, each well-performance subpopulation generates a learning particle by merging different dimensions of different particles, which can fully combine the superiorities of all the particles in the current well-performance subpopulation. The worse particle can significantly improve itself by learning these two superiority combination particles from the well -performance subpopulations, leading to a successful search. Experimental results show that SCLDPSO performs better than or at least comparable with other state-of-the-art large-scale optimization algorithms on both CEC2010 and CEC2013 large-scale optimization test suites, including the winner of the competition on large-scale optimization. Besides, the extended experiments with increasing dimensions to 2000 show the scalability of SCLDPSO. At last, an application in large-scale portfolio optimization problems further illustrates the applicability of SCLDPSO.(c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] An Adaptive Multi-Swarm Competition Particle Swarm Optimizer for Large-Scale Optimization
    Kong, Fanrong
    Jiang, Jianhui
    Huang, Yan
    MATHEMATICS, 2019, 7 (06)
  • [22] CenPSO: A Novel Center-based Particle Swarm Optimization Algorithm for Large-scale Optimization
    Mousavirad, Seyed Jalaleddin
    Rahnamayan, Shahryar
    2020 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2020, : 2066 - 2071
  • [23] Progressive Sampling Surrogate-Assisted Particle Swarm Optimization for Large-Scale Expensive Optimization
    Wang, Hong-Rui
    Chen, Chun-Hua
    Li, Yun
    Zhang, Jun
    Zhi-Hui-Zhan
    PROCEEDINGS OF THE 2022 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO'22), 2022, : 40 - 48
  • [24] Cooperative Particle Swarm Optimization With a Bilevel Resource Allocation Mechanism for Large-Scale Dynamic Optimization
    Liu, Xiao-Fang
    Zhang, Jun
    Wang, Jun
    IEEE TRANSACTIONS ON CYBERNETICS, 2023, 53 (02) : 1000 - 1011
  • [25] Decomposition and merging cooperative particle swarm optimization with random grouping for large-scale optimization problems
    McNulty, Alanna
    Ombuki-Berman, Beatrice
    Engelbrecht, Andries
    SWARM INTELLIGENCE, 2024, 18 (2-3) : 141 - 166
  • [26] Large-Scale and Distributed Optimization Preface
    Giselsson, Pontus
    Rantzer, Anders
    LARGE-SCALE AND DISTRIBUTED OPTIMIZATION, 2018, 2227 : V - V
  • [27] Large-Scale and Distributed Optimization: An Introduction
    Giselsson, Pontus
    Rantzer, Anders
    LARGE-SCALE AND DISTRIBUTED OPTIMIZATION, 2018, 2227 : 1 - 10
  • [28] A Level-Based Learning Swarm Optimizer for Large-Scale Optimization
    Yang, Qiang
    Chen, Wei-Neng
    Da Deng, Jeremiah
    Li, Yun
    Gu, Tianlong
    Zhang, Jun
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2018, 22 (04) : 578 - 594
  • [29] Distributed Contribution-Based Quantum-Behaved Particle Swarm Optimization With Controlled Diversity for Large-Scale Global Optimization Problems
    Chen, Qidong
    Sun, Jun
    Palade, Vasile
    IEEE ACCESS, 2019, 7 : 150093 - 150104
  • [30] Greedy discrete particle swarm optimization for large-scale social network clustering
    Cai, Qing
    Gong, Maoguo
    Ma, Lijia
    Ruan, Shasha
    Yuan, Fuyan
    Jiao, Licheng
    INFORMATION SCIENCES, 2015, 316 : 503 - 516