Blow-up phenomena and the local well-posedness and ill-posedness of the generalized Camassa-Holm equation in critical Besov spaces

被引:1
|
作者
Meng, Zhiying [1 ]
Yin, Zhaoyang [1 ,2 ]
机构
[1] Sun Yat Sen Univ, Dept Math, Guangzhou 510275, Peoples R China
[2] Macau Univ Sci & Technol, Fac Informat Technol, Macau, Peoples R China
来源
MONATSHEFTE FUR MATHEMATIK | 2023年 / 200卷 / 04期
关键词
A generalized Camassa-Holm equation; Local well-posedness; Blow-up; Ill-posedness; GLOBAL CONSERVATIVE SOLUTIONS; SHALLOW-WATER EQUATION; CAUCHY-PROBLEM; WEAK SOLUTIONS; EXISTENCE;
D O I
10.1007/s00605-022-01719-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we first establish the local well-posednesss for the Cauchy problem of a generalized Camassa-Holm (gCH) equation in Besov spaces B-p,1(1+1p) with 1 <= p<+infinity Then we gain two blow-up criterions, and present two new blow-up results. Finally, we prove the ill-posedness of the gCH equation in critical Besov spaces B-2,r(3/2),r is an element of(1,+infinity].
引用
收藏
页码:933 / 954
页数:22
相关论文
共 50 条
  • [21] Local well-posedness and blow-up criteria for a three-component Camassa-Holm type equation
    Li, Zhigang
    Hu, Yuxi
    JOURNAL OF MATHEMATICAL PHYSICS, 2020, 61 (02)
  • [22] Ill-posedness for a generalized Camassa-Holm equation with higher-order nonlinearity in the critical Besov space
    Deng, Wei
    Li, Min
    Wu, Xing
    Zhu, Weipeng
    MONATSHEFTE FUR MATHEMATIK, 2024, 203 (04): : 843 - 857
  • [23] Well-posedness and blow-up phenomena for an integrable three-component Camassa-Holm system
    Zhang, Lei
    Liu, Bin
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 465 (02) : 731 - 761
  • [24] Well-posedness of the modified Camassa–Holm equation in Besov spaces
    Hao Tang
    Zhengrong Liu
    Zeitschrift für angewandte Mathematik und Physik, 2015, 66 : 1559 - 1580
  • [25] Local Well-Posedness of a Coupled Camassa-Holm System in Critical Spaces
    Liu, Xingxing
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2015, 34 (01): : 43 - 59
  • [26] Well-posedness and blow-up phenomena for a periodic two-component Camassa Holm equation
    Hu, Qiaoyi
    Yin, Zhaoyang
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2011, 141 : 93 - 107
  • [27] Remarks on the well-posedness of Camassa-Holm type equations in Besov spaces
    Li, Jinlu
    Yin, Zhaoyang
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (11) : 6125 - 6143
  • [28] Nonuniform dependence and well-posedness for the generalized Camassa-Holm equation
    Mi, Yongsheng
    Wang, Linsong
    Guo, Boling
    Mu, Chunlai
    APPLICABLE ANALYSIS, 2019, 98 (08) : 1520 - 1548
  • [29] WELL-POSEDNESS AND BLOW-UP PHENOMENA FOR THE INTERACTING SYSTEM OF THE CAMASSA-HOLM AND DEGASPERIS-PROCESI EQUATIONS
    Fu, Ying
    Qu, Changzheng
    Ma, Yichen
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2010, 27 (03) : 1025 - 1035
  • [30] A note on well-posedness for Camassa-Holm equation
    Danchin, R
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2003, 192 (02) : 429 - 444