Self-supervised Low-Light Image Enhancement via Histogram Equalization Prior

被引:3
|
作者
Zhang, Feng [1 ]
Shao, Yuanjie [2 ]
Sun, Yishi [1 ]
Gao, Changxin [1 ]
Sang, Nong [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Artificial Intelligence & Automat, Natl Key Lab Multispectral Informat Intelligent P, Wuhan, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Elect Informat & Commun, Wuhan, Peoples R China
关键词
Low-Light Image Enhancement; Self-Supervised Learning; Histogram Equalization Prior;
D O I
10.1007/978-981-99-8552-4_6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep learning-based methods for low-light image enhancement have achieved remarkable success. However, the requirement of enormous paired real data limits the generality of these models. Although there have been a few attempts in training low-light image enhancement model in the self-supervised manner with only low-light images, these approaches suffer from inefficient prior information or improper brightness. In this paper, we present a novel self-supervised method named HEPNet to train an effective low-light image enhancement model with only low-light images. Our method drives the self-supervised learning of the network through an effective image prior termed histogram equalization prior (HEP). This prior is a feature space information of the histogram equalized images. It is based on an interesting observation that the feature maps of histogram equalized images and the reference images are similar. Specifically, we utilize a mapping function to generate the histogram equalization prior, and then integrate it into the model through a spatial feature transform (SFT) layer. Guided by the histogram equalization prior, our method can recover finer details in real-world low-light scenarios. Extensive experiments demonstrate that our method performs favorably against the state-of-the-art unsupervised low-light image enhancement algorithms and even matches the state-of-the-art supervised algorithms.
引用
收藏
页码:63 / 75
页数:13
相关论文
共 50 条
  • [31] LOW-LIGHT IMAGE ENHANCEMENT USING CNN AND BRIGHT CHANNEL PRIOR
    Tao, Li
    Zhu, Chuang
    Song, Jiawen
    Lu, Tao
    Jia, Huizhu
    Xie, Xiaodong
    2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 3215 - 3219
  • [32] Low-Light Image Enhancement via the Absorption Light Scattering Model
    Wang, Yun-Fei
    Liu, He-Ming
    Fu, Zhao-Wang
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019, 28 (11) : 5679 - 5690
  • [33] Single Low-Lighting Image Enhancement via Self-Supervised Intensity Map Estimation
    Yang, Yi
    Kee, Longzhang
    Wang, Wei
    2022 IEEE 17TH CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA), 2022, : 474 - 478
  • [34] Low-light Image Enhancement via Breaking Down the Darkness
    Guo, Xiaojie
    Hu, Qiming
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2023, 131 (01) : 48 - 66
  • [35] Low-Light Image Enhancement via a Deep Hybrid Network
    Ren, Wenqi
    Liu, Sifei
    Ma, Lin
    Xu, Qianqian
    Xu, Xiangyu
    Cao, Xiaochun
    Du, Junping
    Yang, Ming-Hsuan
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019, 28 (09) : 4364 - 4375
  • [36] Self-supervised tomographic image noise suppression via residual image prior network
    Pan J.
    Chang D.
    Wu W.
    Chen Y.
    Wang S.
    Computers in Biology and Medicine, 2024, 179
  • [37] Low-Light Image Enhancement via Structure Modeling and Guidance
    Xu, Xiaogang
    Wang, Ruixing
    Lu, Jiangbo
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 9893 - 9903
  • [38] Low-light Image Enhancement via Dual Reflectance Estimation
    Jia, Fan
    Wang, Tiange
    Zeng, Tieyong
    JOURNAL OF SCIENTIFIC COMPUTING, 2024, 98 (02)
  • [39] Low-light Image Enhancement via Breaking Down the Darkness
    Xiaojie Guo
    Qiming Hu
    International Journal of Computer Vision, 2023, 131 : 48 - 66
  • [40] Low-light Image Enhancement via Layer Decomposition and Optimization
    Xue Ying
    Zhou Pucheng
    Xue Mogen
    TWELFTH INTERNATIONAL CONFERENCE ON GRAPHICS AND IMAGE PROCESSING (ICGIP 2020), 2021, 11720