Remarks on propagating waves in non-linear vacuum electrodynamics

被引:1
|
作者
Perez-Garcia, M. A. [1 ]
Perez Martinez, A. [1 ]
Rodriguez Querts, E. [2 ]
机构
[1] Univ Salamanca, Dept Fundamental Phys, Plaza Merced s-n, Salamanca 37008, Spain
[2] Inst Cibernet Matemat & Fis ICIMAF, Dept Fis Teor, Calle E esq 15 309 Vedado, Havana 10400, Cuba
来源
EUROPEAN PHYSICAL JOURNAL C | 2023年 / 83卷 / 08期
关键词
POLARIZATION; INTENSITY; FIELD;
D O I
10.1140/epjc/s10052-023-11902-3
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
Using the quadratic expansion in the photon fields of Euler-Heisenberg (EH) non-linear electrodynamics (NLED) Lagrangian model we study relevant vacuum properties in a scenario involving the propagation of a photon probe in the presence of a background constant and static magnetic field, B-e. We compute the gauge invariant, symmetric and conserved energy-momentum tensor (EMT) and angular momentum tensor (AMT) for arbitrary magnetic field strength using the Hilbert method under the soft-photon approximation. We discuss how the presence of magneto-electric terms in the EH Lagrangian is a source of anisotropy, induce the non-zero trace in the EMT and leads to differences between EMT calculated by the Hilbert or Noether method. From the Hilbert EMT we analyze some quantities of interest such as the energy density, pressures, Poynting vector, and angular momentum vector, comparing and discussing the differences with respect to the improved Noether method. The magnetized vacuum properties are also studied showing that a photon effective magnetic moment can be defined for different polarization modes. The calculations are done in terms of derivatives of the two scalar invariants of electrodynamics, hence, extension to other NLED Lagrangian is straightforward. We discuss further physical implications and experimental strategies to test magnetization, photon pressure, and effective magnetic moment.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] REMARKS ON PATHWISE NON-LINEAR FILTERING
    MITTER, SK
    LECTURE NOTES IN MATHEMATICS, 1983, 979 : 232 - 235
  • [42] Remarks on non-linear spectral perturbation
    Simoncini, V
    BIT, 1999, 39 (02): : 350 - 365
  • [43] REMARKS ON NON-LINEAR FUNCTIONAL EQUATIONS
    EDMUNDS, DE
    MATHEMATISCHE ANNALEN, 1967, 174 (03) : 233 - &
  • [44] REMARKS ON NON-LINEAR SPECTRAL THEORY
    EDMUNDS, DE
    WEBB, JRL
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1983, 2B (01): : 377 - 390
  • [45] Non-propagating electric and density structures formed through non-linear interaction of Alfven waves
    Mottez, F.
    ANNALES GEOPHYSICAE, 2012, 30 (01) : 81 - 95
  • [46] NON-LINEAR DRIFT WAVES
    TANIUTI, T
    HASEGAWA, A
    PHYSICA SCRIPTA, 1982, T2 : 529 - 533
  • [47] NON-LINEAR STERN WAVES
    VANDENBROECK, JM
    JOURNAL OF FLUID MECHANICS, 1980, 96 (FEB) : 603 - 611
  • [48] Non-linear waves in ferroelastics
    Chaplygin, MN
    Darinskii, BM
    Sidorkin, AS
    FERROELECTRICS, 2004, 307 : 1 - 6
  • [49] STRONGLY NON-LINEAR WAVES
    SCHWARTZ, LW
    FENTON, JD
    ANNUAL REVIEW OF FLUID MECHANICS, 1982, 14 : 39 - 60
  • [50] NON-LINEAR DISPERSIVE WAVES
    WHITHAM, GB
    PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1965, 283 (1393): : 238 - &