Remarks on propagating waves in non-linear vacuum electrodynamics

被引:1
|
作者
Perez-Garcia, M. A. [1 ]
Perez Martinez, A. [1 ]
Rodriguez Querts, E. [2 ]
机构
[1] Univ Salamanca, Dept Fundamental Phys, Plaza Merced s-n, Salamanca 37008, Spain
[2] Inst Cibernet Matemat & Fis ICIMAF, Dept Fis Teor, Calle E esq 15 309 Vedado, Havana 10400, Cuba
来源
EUROPEAN PHYSICAL JOURNAL C | 2023年 / 83卷 / 08期
关键词
POLARIZATION; INTENSITY; FIELD;
D O I
10.1140/epjc/s10052-023-11902-3
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
Using the quadratic expansion in the photon fields of Euler-Heisenberg (EH) non-linear electrodynamics (NLED) Lagrangian model we study relevant vacuum properties in a scenario involving the propagation of a photon probe in the presence of a background constant and static magnetic field, B-e. We compute the gauge invariant, symmetric and conserved energy-momentum tensor (EMT) and angular momentum tensor (AMT) for arbitrary magnetic field strength using the Hilbert method under the soft-photon approximation. We discuss how the presence of magneto-electric terms in the EH Lagrangian is a source of anisotropy, induce the non-zero trace in the EMT and leads to differences between EMT calculated by the Hilbert or Noether method. From the Hilbert EMT we analyze some quantities of interest such as the energy density, pressures, Poynting vector, and angular momentum vector, comparing and discussing the differences with respect to the improved Noether method. The magnetized vacuum properties are also studied showing that a photon effective magnetic moment can be defined for different polarization modes. The calculations are done in terms of derivatives of the two scalar invariants of electrodynamics, hence, extension to other NLED Lagrangian is straightforward. We discuss further physical implications and experimental strategies to test magnetization, photon pressure, and effective magnetic moment.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Remarks on propagating waves in non-linear vacuum electrodynamics
    M. A. Pérez-García
    A. Pérez Martínez
    E. Rodríguez Querts
    The European Physical Journal C, 83
  • [2] Probing modified plasma waves in non-linear electrodynamics
    Ospedal, Leonardo P. R.
    Haas, Fernando
    PHYSICS OF PLASMAS, 2023, 30 (06)
  • [3] WAVES, SHOCKS AND SYMMETRIZATION IN A NON-LINEAR THEORY OF ELECTRODYNAMICS
    BOILLAT, G
    VENTURI, G
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS, 1983, 77 (03): : 358 - 367
  • [4] The problem of two plane waves in classical non-linear electrodynamics
    Smirnov, AA
    JOURNAL OF PHYSICS-USSR, 1940, 3 : 447 - 453
  • [5] Effects of non-linear electrodynamics of vacuum in the magnetic quadrupole field of a pulsar
    Abishev, M. E.
    Toktarbay, S.
    Beissen, N. A.
    Belissarova, F. B.
    Khassanov, M. K.
    Kudussov, A. S.
    Abylayeva, A. Zh.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2018, 481 (01) : 36 - 43
  • [6] NON-LINEAR APPROACH TO ELECTRODYNAMICS
    RIGHI, R
    VENTURI, G
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1982, 21 (01) : 63 - 82
  • [7] Non-linear electrodynamics in cosmology
    Novello, M
    Bergliaffa, SEP
    COSMOLOGY AND GRAVITATION, 2005, 782 : 306 - 317
  • [8] TESTABILITY OF NON-LINEAR ELECTRODYNAMICS
    GRASSISTRINI, AM
    STRINI, G
    TAGLIAFERRI, G
    PHYSICAL REVIEW D, 1979, 19 (08): : 2330 - 2335
  • [9] EXISTENCE CRITERION OF LONGITUDINALLY INHOMOGENEOUS TRAVELING WAVES IN NON-LINEAR ELECTRODYNAMICS
    KAPLAN, AE
    KVANTOVAYA ELEKTRONIKA, 1978, 5 (01): : 166 - 168
  • [10] Simulation of "Tsunami Waves" Propagating along Non-Linear Transmission Lines
    Valsa, Juraj
    RADIOENGINEERING, 2005, 14 (03) : 41 - 47