On the simulations of latent heat flux over the Indian Ocean in CMIP6 models

被引:0
|
作者
Mohan, Soumya [1 ,2 ]
Ruchith, R. D. [1 ]
机构
[1] CSIR, Natl Inst Oceanog, Phys Oceanog Div, Panaji, Goa, India
[2] Acad Sci & Innovat Res AcSIR, Gaziabad, India
关键词
CMIP6; LHF; Climate models; Long-term trend; Multimodel mean; BIASES; VARIABILITY; STABILITY; PRODUCTS;
D O I
10.1007/s00382-023-06871-y
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
The historical simulations of latent heat flux (LHF) over the Indian Ocean (IO) region in 46 climate models participating in the phase 6 of Coupled Model Intercomparison Project (CMIP6) have been evaluated against the ERA5 dataset for the period 1975-2014. The multimodel mean (MMM) captures the observed spatial pattern of LHF climatological mean state to a great extent, but there are large biases in magnitude, especially over the region north of 20 degrees S and south of 40 degrees S, and these biases are common to more than 70% of the individual CMIP6 models. The origins of these biases are due to overestimated surface winds and vertical humidity gradients in the models. The simulated trend values of LHF are largely underestimated and are highly inconsistent in individual models. The basin-wide increase of surface saturation specific humidity (Q(s)) is largely compensated by a similar increase in near-surface saturation specific humidity (Q(a)) trend, which leads to reduced vertical humidity gradient for the latent heat transfer to take place at the air-sea interface. The long-term trend of sea surface temperature (SST) and Q(S) are found to be reasonable in CMIP6 models. One of the reasons for the underestimated LHF trend in CMIP6 models is the faster rate of increase of Q(a )and very slow rate of increase of surface wind speed compared to the ERA5 dataset.
引用
收藏
页码:5573 / 5595
页数:23
相关论文
共 50 条
  • [31] Arctic Ocean simulations in the CMIP6 Ocean Model Intercomparison Project (OMIP)
    Shu, Qi
    Wang, Qiang
    Guo, Chuncheng
    Song, Zhenya
    Wang, Shizhu
    He, Yan
    Qiao, Fangli
    GEOSCIENTIFIC MODEL DEVELOPMENT, 2023, 16 (09) : 2539 - 2563
  • [32] Assessment of CMIP6 models' skill for tropical Indian Ocean sea surface temperature variability
    Halder, Subrota
    Parekh, Anant
    Chowdary, Jasti S.
    Gnanaseelan, Chellappan
    Kulkarni, Ashwini
    INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2021, 41 (04) : 2568 - 2588
  • [33] Added value of CMIP6 over CMIP5 models in simulating Indian summer monsoon rainfall
    Gusain, A.
    Ghosh, S.
    Karmakar, S.
    ATMOSPHERIC RESEARCH, 2020, 232
  • [34] Performance of CMIP6 models over South America
    Bazzanela, Anna Carolina
    Dereczynski, Claudine
    Luiz-Silva, Wanderson
    Regoto, Pedro
    CLIMATE DYNAMICS, 2024, 62 (02) : 1501 - 1516
  • [35] Performance of CMIP6 models over South America
    Anna Carolina Bazzanela
    Claudine Dereczynski
    Wanderson Luiz-Silva
    Pedro Regoto
    Climate Dynamics, 2024, 62 : 1501 - 1516
  • [36] Arctic Ocean Amplification in a warming climate in CMIP6 models
    Shu, Qi
    Wang, Qiang
    Arthun, Marius
    Wang, Shizhu
    Song, Zhenya
    Zhang, Min
    Qiao, Fangli
    SCIENCE ADVANCES, 2022, 8 (30)
  • [37] Evaluation of ocean dimethylsulfide concentration and emission in CMIP6 models
    Bock, Josue
    Michou, Martine
    Nabat, Pierre
    Abe, Manabu
    Mulcahy, Jane P.
    Olivie, Dirk J. L.
    Schwinger, Jorg
    Suntharalingam, Parvadha
    Tjiputra, Jerry
    van Hulten, Marco
    Watanabe, Michio
    Yool, Andrew
    Seferian, Roland
    BIOGEOSCIENCES, 2021, 18 (12) : 3823 - 3860
  • [38] The Deep Arctic Ocean and Fram Strait in CMIP6 Models
    Heuze, Celine
    Zanowski, Hannah
    Karam, Salar
    Muilwijk, Morven
    JOURNAL OF CLIMATE, 2023, 36 (08) : 2551 - 2584
  • [39] An assessment of temperature simulations by CMIP6 climate models over the Tibetan Plateau and differences with CMIP5 climate models
    Hu, Qin
    Hua, Wei
    Yang, Kaiqing
    Ming, Jing
    Ma, Pan
    Zhao, Yong
    Fan, Guangzhou
    THEORETICAL AND APPLIED CLIMATOLOGY, 2022, 148 (1-2) : 223 - 236
  • [40] An assessment of temperature simulations by CMIP6 climate models over the Tibetan Plateau and differences with CMIP5 climate models
    Qin Hu
    Wei Hua
    Kaiqing Yang
    Jing Ming
    Pan Ma
    Yong Zhao
    Guangzhou Fan
    Theoretical and Applied Climatology, 2022, 148 : 223 - 236