Sustainable production of AlSi10Mg parts by laser powder bed fusion process

被引:3
|
作者
Mercurio, Vincenza [1 ]
Calignano, Flaviana [1 ]
Iuliano, Luca [1 ]
机构
[1] Politecn Torino, Integrated Addit Mfg Ctr IAM, Dept Management & Prod Engn DIGEP, Corso Duca Abruzzi 24, I-10129 Turin, Italy
来源
INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY | 2023年 / 125卷 / 7-8期
关键词
Laser powder bed fusion; Aluminum alloy; Additive manufacturing; CT scan; Productivity; Sustainability; MECHANICAL-PROPERTIES; ENERGY DENSITY; ALLOY; OPTIMIZATION; PARAMETER; ALUMINUM; POROSITY; QUALITY; REUSE; SCAN;
D O I
10.1007/s00170-023-11004-0
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Laser powder bed fusion (L-PBF) is an additive manufacturing technology that allows producing complex and lightweight parts without the use of specific tooling during the building process. However, despite continuous developments, some problems limit its use in series production. To introduce these systems in mass production, it is necessary to solve the problems and exceed the limits related to the requirements of industrialization: higher productivity, less material consumption, less over-production, and less waste, greater stability of the process, and higher quality of the final components. In this study, good practices to reduce resource consumption are presented. The production rate of the L-PBF technique was increased to produce AlSi10Mg alloy components. All the samples were manufactured with 90-mu m-layer thickness increasing productivity by approximately 65%. A design of experiments (DOE) method was used to analyze the effect of process parameters on the densification percentage. The produced samples were observed with a non-destructive process, the X-ray computed tomography system, to detect the presence of defects and pores. It has been found that a combination of parameters can induce porosities with a morphology such that after stress relieving the density increases rather than decreases as has been widely discussed in the literature. The mechanical properties are comparable with the literature values for conventional technologies. Good values of as-built surface roughness were also achieved despite the layer thickness.
引用
收藏
页码:3117 / 3133
页数:17
相关论文
共 50 条
  • [41] Laser powder bed fusion of SiO2/AlSi10Mg composite material
    Feng, Zhijian
    Yang, Tian
    Qiu, Yating
    Han, Wei
    Kong, Lingbao
    CERAMICS INTERNATIONAL, 2025, 51 (03) : 3520 - 3532
  • [42] Side surface topography generation during laser powder bed fusion of AlSi10Mg
    Masiagutova, E.
    Cabanettes, F.
    Sova, A.
    Cici, M.
    Bidron, G.
    Bertrand, P.
    ADDITIVE MANUFACTURING, 2021, 47
  • [43] Nanoscale periodic gradients generated by laser powder bed fusion of an AlSi10Mg alloy
    Lefebvre, Williams
    Rose, Gregory
    Delroisse, Pauline
    Baustert, Eric
    Cuvilly, Fabien
    Simar, Aude
    MATERIALS & DESIGN, 2021, 197
  • [44] Metallurgical Defects and Roughness Investigation in the Laser Powder Bed Fusion Multi-Scanning Strategy of AlSi10Mg Parts
    Boschetto, Alberto
    Bottini, Luana
    Pilone, Daniela
    METALS, 2024, 14 (06)
  • [45] Gold-Silver Electroless Plating on Laser Powder-Bed Fusion Additively Printed AlSi10Mg Parts
    Inberg, Alexandra
    Ashkenazi, Dana
    Kimmel, Giora
    Shacham-Diamand, Yosi
    Stern, Adin
    METALS, 2020, 10 (05)
  • [46] Effects of Laser-Powder Bed Fusion Process Parameters on the Microstructure and Corrosion Properties of AlSi10Mg Alloy
    Rafieazad, Mehran
    Fathi, Parisa
    Mohammadi, Mohsen
    Nasiri, Ali
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2021, 168 (02)
  • [47] Influence of AlSi10Mg powder aging on the material degradation and its processing in laser powder bed fusion
    Fedina, Tatiana
    Belelli, Filippo
    Lupi, Giorgia
    Brandau, Benedikt
    Casati, Riccardo
    Berneth, Raphael
    Brueckner, Frank
    Kaplan, Alexander F. H.
    POWDER TECHNOLOGY, 2022, 412
  • [48] Effect of Post Heat Treatment on Fatigue Strength of AlSi10Mg Produced by Laser Powder Bed Fusion Process
    Lai, Wei-Jen
    Ojha, Avinesh
    Li, Ziang
    TMS 2022 151ST ANNUAL MEETING & EXHIBITION SUPPLEMENTAL PROCEEDINGS, 2022, : 141 - 163
  • [49] New insight into the multivariate relationships among process, structure, and properties in laser powder bed fusion AlSi10Mg
    Luo, Qixiang
    Huang, Nancy
    Fu, Tianyi
    Wang, Jinying
    Bartles, Dean L.
    Simpson, Timothy W.
    Beese, Allison M.
    ADDITIVE MANUFACTURING, 2023, 77
  • [50] In Situ Ageing with the Platform Preheating of AlSi10Mg Alloy Manufactured by Laser Powder-Bed Fusion Process
    Chambrin, Nicolas
    Dalverny, Olivier
    Cloue, Jean-Marc
    Brucelle, Olivier
    Alexis, Joel
    METALS, 2022, 12 (12)