Forecasting gold price using machine learning methodologies

被引:5
|
作者
Cohen, Gil [1 ]
Aiche, Avishay [1 ]
机构
[1] Western Galilee Acad Coll, Management Dept, Akko, Israel
关键词
Commodities; Machine learning; Regression trees; Gradient boosted regression trees; Extreme gradient boosting; PRECIOUS-METAL; RETURNS; OIL;
D O I
10.1016/j.chaos.2023.114079
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This study investigates the potential of advanced Machine Learning (ML) methodologies to predict fluctuations in the price of gold. The study employs data from leading global stock indices, the S&P500 VIX volatility index, major commodity futures, and 10-year bond yields from the US, Germany, France, and Japan. Lagged values of these features up to 10 previous days are also used. Four machine learning models are used: Random Forest, Gradient Boosted Regression Trees (GBRT), and Extreme Gradient Boosting (XGBoost), to forecast future gold prices. The study finds that the most influential stocks indices for prediction are one-day lagged data of ASX, S&P500, TA35, IBEX, and AEX, as well as U.S. and Japan bonds yields and delayed data of gas and silver. Furthermore, the study's models identify that one-day lagged VIX score and our VIX dummy variable have a significant impact on gold price, indicating that economic uncertainty affects gold prices. The results suggest that incorporating various financial indicators and moving averages can be a powerful tool for predicting future gold prices. GBRT and XGBoost can be valuable models for making informed decisions about gold investments.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Forecasting the price of gold
    Hassani, Hossein
    Silva, Emmanuel Sirimal
    Gupta, Rangan
    Segnon, Mawuli K.
    APPLIED ECONOMICS, 2015, 47 (39) : 4141 - 4152
  • [22] Electricity Price Forecasting With Extreme Learning Machine and Bootstrapping
    Chen, Xia
    Dong, Zhao Yang
    Meng, Ke
    Ku, Yan
    Wong, Kit Po
    Ngan, H. W.
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2012, 27 (04) : 2055 - 2062
  • [23] Combining Machine Learning and Optimization for Efficient Price Forecasting
    Helseth, Arild
    Sveen, Eivind Bekken
    2020 17TH INTERNATIONAL CONFERENCE ON THE EUROPEAN ENERGY MARKET, EEM, 2020,
  • [24] Commodity price forecasting via machine learning models
    Ludovico, Sergio Nunes
    Salgado, Ricardo Menezes
    Beijo, Luiz Alberto
    Miguel, Eliseu Cesar
    Rezende, Marcelo Lacerda
    SIGMAE, 2022, 11 (02): : 45 - 69
  • [25] A hybrid machine learning framework for forecasting house price
    Zhan, Choujun
    Liu, Yonglin
    Wu, Zeqiong
    Zhao, Mingbo
    Chow, Tommy W. S.
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 233
  • [26] Machine learning and oil price point and density forecasting
    Costa, Alexandre Bonnet R.
    Ferreira, Pedro Cavalcanti G.
    Gaglianone, Wagner P.
    Guillen, Osmani Teixeira C.
    Issler, Joao Victor
    Lin, Yihao
    ENERGY ECONOMICS, 2021, 102
  • [27] CryptoAnalytics: Cryptocoins price forecasting with machine learning techniques
    De Rosa, Pasquale
    Felber, Pascal
    Schiavoni, Valerio
    SOFTWAREX, 2024, 26
  • [28] Stock Price Forecasting by Hybrid Machine Learning Techniques
    Tsai, C-F
    Wang, S-P
    IMECS 2009: INTERNATIONAL MULTI-CONFERENCE OF ENGINEERS AND COMPUTER SCIENTISTS, VOLS I AND II, 2009, : 755 - +
  • [29] Evolutionary extreme learning machine for energy price forecasting
    Chakravarty, S.
    Mohapatra, P.
    Dash, P. K.
    INTERNATIONAL JOURNAL OF KNOWLEDGE-BASED AND INTELLIGENT ENGINEERING SYSTEMS, 2016, 20 (02) : 75 - 96
  • [30] Crude oil price forecasting based on internet concern using an extreme learning machine
    Wang, Jue
    Athanasopoulos, George
    Hyndman, Rob J.
    Wang, Shouyang
    INTERNATIONAL JOURNAL OF FORECASTING, 2018, 34 (04) : 665 - 677