Turan inequalities for k-th power partition functions

被引:1
|
作者
Benfield, Brennan [1 ]
Paul, Madhumita [2 ]
Roy, Arindam [2 ]
机构
[1] Univ Hawaii, Dept Math, 2565 McCarthy Mall, Honolulu, HI 96822 USA
[2] Univ North Carolina Charlotte, Dept Math & Stat, 9201 Univ City Blvd, Charlotte, NC 28223 USA
关键词
Power partition functions; Log-concave sequence; Turan inequalities; Jensen polynomial; LOG-CONCAVITY;
D O I
10.1016/j.jmaa.2023.127678
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The k-th power partition function counts the number of ways that an integer can be written as a sum of perfect k-th powers, a restriction of the well known partition function. Many restricted partition functions have recently been proven to satisfy the higher order the Turan inequalities. This paper shows that the k-th power partition function likewise satisfies these inequalities. In particular, we prove a conjecture by Ulas, improving the upper and lower bounds given in his inequality. Published by Elsevier Inc.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] On the general position number of the k-th power graphs
    Tian, Jing
    Xu, Kexiang
    QUAESTIONES MATHEMATICAE, 2024, 47 (11) : 2215 - 2230
  • [32] ON THE DISTRIBUTION OF k-TH POWER FREE INTEGERS, II
    Trinh Khanh Duy
    Takanobu, Satoshi
    OSAKA JOURNAL OF MATHEMATICS, 2013, 50 (03) : 687 - 713
  • [33] The least k-th power non-residue
    Trevino, Enrique
    JOURNAL OF NUMBER THEORY, 2015, 149 : 201 - 224
  • [34] Turan type inequalities for Kratzel functions
    Baricz, Arpad
    Jankov, Dragana
    Pogany, Tibor K.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 388 (02) : 716 - 724
  • [35] Inequalities for the broken k-diamond partition functions
    Jia, Dennis X. Q.
    JOURNAL OF NUMBER THEORY, 2023, 249 : 314 - 347
  • [36] Some inequalities for k-colored partition functions
    Chern, Shane
    Fu, Shishuo
    Tang, Dazhao
    RAMANUJAN JOURNAL, 2018, 46 (03): : 713 - 725
  • [37] Some inequalities for k-colored partition functions
    Shane Chern
    Shishuo Fu
    Dazhao Tang
    The Ramanujan Journal, 2018, 46 : 713 - 725
  • [38] Turan type inequalities for hypergeometric functions
    Baricz, Arpad
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 136 (09) : 3223 - 3229
  • [39] An Arithmetic Function and the k-th Power Part of a Positive Integer
    Wang, Mingjun
    MECHATRONICS AND INTELLIGENT MATERIALS II, PTS 1-6, 2012, 490-495 : 1941 - 1944
  • [40] On the sum of a prime and a k-th power of prime in short intervals
    Wang, Y. C.
    ACTA MATHEMATICA HUNGARICA, 2012, 135 (03) : 248 - 269