Periodic Detection Mode Decomposition and Its Application in Bearing Fault Diagnosis

被引:3
|
作者
Ma, Chaoyong [1 ]
Yang, Zhiqiang [1 ]
Xu, Yonggang [2 ]
Hu, Aijun [3 ]
Zhang, Kun [1 ]
机构
[1] Beijing Univ Technol, Dept Mat & Mfg, Beijing 100124, Peoples R China
[2] Beijing Univ Technol, Beijing Engn Res Ctr Precis Measurement Technol &, Beijing 100124, Peoples R China
[3] North China Elect Power Univ, Dept Mech Engn, Baoding 071003, Peoples R China
基金
中国国家自然科学基金;
关键词
Periodic component (PC); periodic detection mode decomposition (PDMD); Ramanujan subspace (RS); rolling bearing; singular value ratio (SVR) spectrum; RAMANUJAN SUMS; SUBSPACE; CONTEXT;
D O I
10.1109/JSEN.2023.3265377
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In the complex background noise, it is difficult to extract the periodic pulse of the rolling bearing fault signal. In this article, a new modal decomposition method supported by the singular value ratio (SVR) spectrum is proposed to find the optimal period of bearing fault data, which can be named periodic detection mode decomposition (PDMD). To detect the intervals of periods and eliminate the interference of useless periods, the initial measurement intervals in this method are divided according to the theoretical fault periods of different fault types of bearings. In each interval, the SVR spectrum is used to detect the appropriate period and suppress the influence of noise on the recognition process. This period is used to construct the optimal Ramanujan subspace (RS). Finally, harmonic spectral kurtosis (HSK) is used to identify the extracted period as false information, interference, or fault. Simulation and experimental data verify the effectiveness of the proposed method. This method can effectively extract and screen periodic pulses and can successfully identify the outer and inner ring faults of bearings.
引用
收藏
页码:11806 / 11814
页数:9
相关论文
共 50 条
  • [21] The Partial Reconstruction Symplectic Geometry Mode Decomposition and Its Application in Rolling Bearing Fault Diagnosis
    Liu, Yanfei
    Cheng, Junsheng
    Yang, Yu
    Bin, Guangfu
    Shen, Yiping
    Peng, Yanfeng
    SENSORS, 2023, 23 (17)
  • [22] Enhanced symplectic characteristics mode decomposition method and its application in fault diagnosis of rolling bearing
    Cheng, Zhengyang
    Wang, Rongji
    MEASUREMENT, 2020, 166 (166)
  • [23] An Improved VMD With Empirical Mode Decomposition and Its Application in Incipient Fault Detection of Rolling Bearing
    Jiang, Fan
    Zhu, Zhencai
    Li, Wei
    IEEE ACCESS, 2018, 6 : 44483 - 44493
  • [24] Oscillation search robust dynamic mode decomposition method and its application in rolling bearing fault diagnosis
    Huang, Ji
    Wang, Jinhai
    Yang, Jianwei
    Sun, Runtao
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2025, 36 (01)
  • [25] An improved complementary ensemble empirical mode decomposition method and its application in rolling bearing fault diagnosis
    Gu, Jun
    Peng, Yuxing
    DIGITAL SIGNAL PROCESSING, 2021, 113
  • [26] Adaptive variational mode decomposition based on Archimedes optimization algorithm and its application to bearing fault diagnosis
    Wang, Junxia
    Zhan, Changshu
    Li, Sanping
    Zhao, Qiancheng
    Liu, Jiuqing
    Xie, Zhijie
    MEASUREMENT, 2022, 191
  • [27] Application of Variational Mode Decomposition and Permutation Entropy for Rolling Bearing Fault Diagnosis
    Zheng, Xiaoxia
    Zhou, Guowang
    Li, Dongdong
    Zhou, Rongcheng
    Ren, Haohan
    INTERNATIONAL JOURNAL OF ACOUSTICS AND VIBRATION, 2019, 24 (02): : 303 - 311
  • [28] Singular component decomposition and its application in rolling bearing fault diagnosis
    Yang, Miaorui
    Xu, Yonggang
    Zhang, Kun
    Zhang, Xiangfeng
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (01)
  • [29] Empirical variational mode extraction and its application in bearing fault diagnosis
    Pang, Bin
    Zhao, Yanjie
    Yu, Changqi
    Hao, Ziyang
    Sun, Zhenduo
    Xu, Zhenli
    Li, Pu
    APPLIED ACOUSTICS, 2025, 228
  • [30] Ramanujan Fourier Mode Decomposition and Its Application in Gear Fault Diagnosis
    Cheng, Jian
    Yang, Yu
    Wu, Zhantao
    Shao, Haidong
    Pan, Haiyang
    Cheng, Junsheng
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2022, 18 (09) : 6079 - 6088