Self-supervised learning representation for abnormal acoustic event detection based on attentional contrastive learning

被引:1
|
作者
Wei, Juan [1 ]
Zhang, Qian [1 ]
Ning, Weichen [2 ]
机构
[1] Xidian Univ, Sch Commun Engn, Xian 710071, Peoples R China
[2] Hong Kong Polytech Univ, Fac Engn, Dept Comp, HongKong 100872, Peoples R China
关键词
Contrastive learning; Self -supervised learning; Attention mechanism; Abnormal acoustic event detection; FUSION;
D O I
10.1016/j.dsp.2023.104199
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Most abnormal acoustic event detection (AAED) is completed by supervised training of deep learning methods, but manually labeled samples are costly and scarce. This work proposes a self-supervised learning representation for AAED based on contrastive learning to overcome the abovementioned problem. Auditory and visual data augmentations are applied simultaneously to create positive sample pairs. An attention mechanism is introduced into the encoder during self-supervised pre-training. A comparison between fused features by discriminant correlation analysis and a single feature is made to verify the ability of feature grasping for the self-supervised pre-trained model. The pre-training is completed on an abnormal acoustic dataset with noise. Research results show that the self-supervised pre-trained model can achieve an accuracy of 87.72% in linear evaluation and 88.70% in the downstream task with a pure small AAED dataset, which directly exceeds the results of supervised learning. This work releases the stress of the demand for abnormal acoustic event labels.(c) 2023 Published by Elsevier Inc.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Stereo Depth Estimation via Self-supervised Contrastive Representation Learning
    Tukra, Samyakh
    Giannarou, Stamatia
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2022, PT VII, 2022, 13437 : 604 - 614
  • [32] TCGL: Temporal Contrastive Graph for Self-Supervised Video Representation Learning
    Liu, Yang
    Wang, Keze
    Liu, Lingbo
    Lan, Haoyuan
    Lin, Liang
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 1978 - 1993
  • [33] Self-supervised contrastive representation learning for large-scale trajectories
    Li, Shuzhe
    Chen, Wei
    Yan, Bingqi
    Li, Zhen
    Zhu, Shunzhi
    Yu, Yanwei
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2023, 148 : 357 - 366
  • [34] RegionCL: Exploring Contrastive Region Pairs for Self-supervised Representation Learning
    Xu, Yufei
    Zhang, Qiming
    Zhang, Jing
    Tao, Dacheng
    COMPUTER VISION - ECCV 2022, PT XXXIII, 2022, 13693 : 477 - 494
  • [35] Generative and Contrastive Self-Supervised Learning for Graph Anomaly Detection
    Zheng, Yu
    Jin, Ming
    Liu, Yixin
    Chi, Lianhua
    Phan, Khoa T.
    Chen, Yi-Ping Phoebe
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (12) : 12220 - 12233
  • [36] A NOVEL CONTRASTIVE LEARNING FRAMEWORK FOR SELF-SUPERVISED ANOMALY DETECTION
    Li, Jingze
    Lian, Zhichao
    Li, Min
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 3366 - 3370
  • [37] Contrastive self-supervised learning for diabetic retinopathy early detection
    Ouyang, Jihong
    Mao, Dong
    Guo, Zeqi
    Liu, Siguang
    Xu, Dong
    Wang, Wenting
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2023, 61 (09) : 2441 - 2452
  • [38] Contrastive Self-Supervised Learning for Globally Distributed Landslide Detection
    Ghorbanzadeh, Omid
    Shahabi, Hejar
    Piralilou, Sepideh Tavakkoli
    Crivellari, Alessandro
    La Rosa, Laura Elena Cue
    Atzberger, Clement
    Li, Jonathan
    Ghamisi, Pedram
    IEEE ACCESS, 2024, 12 : 118453 - 118466
  • [39] Pose-disentangled Contrastive Learning for Self-supervised Facial Representation
    Liu, Yuanyuan
    Wang, Wenbin
    Zhan, Yibing
    Feng, Shaoze
    Liu, Kejun
    Chen, Zhe
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 9717 - 9728
  • [40] Self-Supervised Facial Motion Representation Learning via Contrastive Subclips
    Sun, Zheng
    Torrie, Shad A.
    Sumsion, Andrew W.
    Lee, Dah-Jye
    ELECTRONICS, 2023, 12 (06)