Exploring the potential of liquid organic hydrogen carrier (LOHC) system for efficient hydrogen storage and Transport: A Techno-Economic and energy analysis perspective

被引:25
|
作者
Tsogt, Nomuunaa [1 ]
Gbadago, Dela Quarme [1 ]
Hwang, Sungwon [1 ,2 ]
机构
[1] Inha Univ, Grad Sch Chem & Chem Engn, Incheon, South Korea
[2] Inha Univ, Dept Smart Digital Engn, Incheon, South Korea
基金
新加坡国家研究基金会;
关键词
LOHC; Hydrogen storage; Process Design; Techno-economic analysis; Net energy analysis; N-PROPYLCARBAZOLE; CHALLENGES; GENERATION; KINETICS; CATALYST; RELEASE; DESIGN;
D O I
10.1016/j.enconman.2023.117856
中图分类号
O414.1 [热力学];
学科分类号
摘要
Despite its potential as an environmentally clean fuel and energy source, hydrogen storage and utilization has been significantly hampered by its extremely low volumetric density (0.08988 g/L at 1 atm), making it inefficient to store and transport. Therefore, liquid organic hydrogen carrier (LOHC) systems are being recently investigated as potential alternatives for hydrogen storage and transport. However, as a budding research area, the selection of a suitable LOHC, its deployment in hydrogen fuel stations, and its economic viability are not well established. Therefore, this study proposes a comprehensive investigation of four different LOHCs [Methylcyclohexane (MCH), Dibenzyltoluene (DBT), N-ethylcarbazole (NEC) and Naphthalene (NAP)] via Aspen HYSYS simulations. The LOHCs were compared and contrasted using their physiochemical properties, techno-economic analysis and heat network integration. The techno-economic analysis revealed that NAP-based hydrogen storage has the lowest cost among the LOHC options, while NEC shows the highest cost. However, when considering the breakeven point, the order changes to DBT, MCH, NAP, and NEC with 3, 3.8, 5.1 and 5.9, respectively. This result is attributed to the different hydrogen uptakes of the LOHCs, resulting in a longer breakeven period for NEC. Internal rate of return and net present value analysis also demonstrated the superior economic feasibility of the proposed systems. In terms of heat integration, the DBT process outperformed the other LOHCs as the most heatefficient process with 80 % utility reduction, while the NEC process exhibited the lowest heat integration potential of 66.7 % utility reduction. Combining these findings with the physiochemical properties of the LOHCs, DBT emerges as the most attractive due to its favorable performance across multiple categories, such as toxicities, prices, energy consumptions, and material handling, using a spiderweb diagram.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Model-based techno-economic evaluation of an electricity storage system based on Liquid Organic Hydrogen Carriers
    Eypasch, Martin
    Schimpe, Michael
    Kanwar, Aastha
    Hartmann, Tobias
    Herzog, Simon
    Frank, Torsten
    Hamacher, Thomas
    APPLIED ENERGY, 2017, 185 : 320 - 330
  • [22] Techno-economic Analysis of Metal-Organic Frameworks for Hydrogen and Natural Gas Storage
    DeSantis, Daniel
    Mason, Jarad A.
    James, Brian D.
    Houchins, Cassidy
    Long, Jeffrey R.
    Veenstra, Mike
    ENERGY & FUELS, 2017, 31 (02) : 2024 - 2032
  • [23] Techno-economic evaluation of seasonal energy storage in the electric-hydrogen-heating energy system
    Jiang, Haiyang
    Lan, Xinyao
    Wei, Hongyi
    Du, Ershun
    Wang, Yating
    Strbac, Goran
    Zhang, Ning
    ENERGY, 2025, 319
  • [24] Hydrogen storage and release from a new promising Liquid Organic Hydrogen Storage Carrier (LOHC): 2-methylindole
    Li, Linlin
    Yang, Ming
    Dong, Yuan
    Mei, Pan
    Cheng, Hansong
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (36) : 16129 - 16134
  • [25] Techno-economic feasibility and performance analysis of an islanded hybrid renewable energy system with hydrogen storage in Morocco
    El Hassani, Sara
    Oueslati, Fakher
    Horma, Othmane
    Santana, Domingo
    Moussaoui, Mohammed Amine
    Mezrhab, Ahmed
    JOURNAL OF ENERGY STORAGE, 2023, 68
  • [26] Burner-heated dehydrogenation of a liquid organic hydrogen carrier (LOHC) system
    Bollmann, Jonas
    Mitlaender, Kerstin
    Beck, Dominik
    Schuehle, Patrick
    Bauer, Florian
    Zigan, Lars
    Wasserscheid, Peter
    Will, Stefan
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (77) : 30039 - 30056
  • [27] Techno-economic Analysis of Energy Storage System for Wind Farms: The UK Perspective
    Campos-Gaona, David
    Madariaga, Ander
    Zafar, Jawwad
    Anaya-Lara, Olimpo
    Burt, Graeme
    2018 INTERNATIONAL CONFERENCE ON SMART ENERGY SYSTEMS AND TECHNOLOGIES (SEST), 2018,
  • [28] Potential Liquid-Organic Hydrogen Carrier (LOHC) Systems: A Review on Recent Progress
    Rao, Puma Chandra
    Yoon, Minyoung
    ENERGIES, 2020, 13 (22)
  • [29] Literature review: state-of-the-art hydrogen storage technologies and Liquid Organic Hydrogen Carrier (LOHC) development
    D'Ambra, Florian
    Gebel, Gerard
    SCIENCE AND TECHNOLOGY FOR ENERGY TRANSITION, 2023, 78 : 1 - 60
  • [30] Techno-Economic Analysis of Hydrogen for Coastal Maritime Transport Electrification
    Pages, Bertrand
    Chavan, Himanshu R.
    Knollmeyer, Jeffrey
    Khan, Saffeer
    2023 IEEE GREEN TECHNOLOGIES CONFERENCE, GREENTECH, 2023, : 78 - 82