Genome-wide analysis of the heat shock transcription factor family reveals saline- alkali stress responses in Xanthoceras sorbifolium

被引:1
|
作者
Li, Lulu [1 ]
Ju, Yiqian [1 ]
Zhang, Cuiping [1 ]
Tong, Boqiang [2 ]
Lu, Yizeng [2 ]
Xie, Xiaoman [2 ]
Li, Wei [1 ]
机构
[1] Qingdao Agr Univ, Qingdao, Peoples R China
[2] Shandong Prov Ctr Forest & Grass Germplasm Resourc, Jinan, Peoples R China
来源
PEERJ | 2023年 / 11卷
关键词
Xanthoceras sorbifolium; Saline-alkali stress; Genetic evolution; Expression pattern; Heat shock transcription factor; DNA-BINDING DOMAIN; MOLECULAR-CLONING; ARABIDOPSIS; GENE; IDENTIFICATION; EXPRESSION; TOLERANCE; RICE; OVEREXPRESSION; SEQUENCE;
D O I
10.7717/peerj.15929
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The heat shock transcription factor (HSF) family is involved in regulating growth, development, and abiotic stress. The characteristics and biological functions of HSF family member in X. sorbifolium, an important oil and ornamental plant, have never been reported. In this study, 21 XsHSF genes were identified from the genome of X. sorbifolium and named XsHSF1-XsHSF21 based on their chromosomal positions. Those genes were divided into three groups, A, B, and C, containing 12, one, and eight genes, respectively. Among them, 20 XsHSF genes are located on 11 chromosomes. Protein structure analysis suggested that XsHSF proteins were conserved, displaying typical DNA binding domains (DBD) and oligomerization domains (OD). Moreover, HSF proteins within the same group contain specific motifs, such as motif 5 in the HSFC group. All XsHSF genes have one intron in the CDS region, except XsHSF1 which has two introns. Promoter analysis revealed that in addition to defense and stress responsiveness elements, some promoters also contained a MYB binding site and elements involved in multiple hormones responsiveness and anaerobic induction. Duplication analysis revealed that XsHSF1 and XsHSF4 genes were segmentally dupli-cated while XsHSF2, XsHSF9, and XsHSF13 genes might have arisen from transposition. Expression pattern analysis of leaves and roots following salt-alkali treatment using qRT-PCR indicated that five XsHSF genes were upregulated and one XsHSF gene was downregulated in leaves upon NaCl treatment suggesting these genes may play important roles in salt response. Additionally, the expression levels of most XsHSFs were decreased in leaves and roots following alkali-induced stress, indicating that those XsHSFs may function as negative regulators in alkali tolerance. MicroRNA target site prediction indicated that 16 of the XsHSF genes may be regulated by multiple microRNAs, for example XsHSF2 might be regulated by miR156, miR394, miR395, miR408, miR7129, and miR854. And miR164 may effect the mRNA levels of XsHSF3 and XsHSF17, XsHSF9 gene may be regulated by miR172. The expression trends of miR172 and miR164 in leaves and roots on salt treatments were opposite to the expression trend of XsHSF9 and XsHSF3 genes, respectively. Promoter analysis showed that XsHSFs might be involved in light and hormone responses, plant development, as well as abiotic stress responses. Our results thus provide an overview of the HSF family in X. sorbifolium and lay a foundation for future functional studies to reveal its roles in saline-alkali response.
引用
收藏
页数:25
相关论文
共 50 条
  • [41] Oxidative stress and heat-shock responses in Desulfovibrio vulgaris by genome-wide transcriptomic analysis
    Zhang, Weiwen
    Culley, David E.
    Hogan, Mike
    Vitiritti, Luigi
    Brockman, Fred J.
    ANTONIE VAN LEEUWENHOEK INTERNATIONAL JOURNAL OF GENERAL AND MOLECULAR MICROBIOLOGY, 2006, 90 (01): : 41 - 55
  • [42] Genome-wide analysis of NAC transcription factor family in maize under drought stress and rewatering
    Guorui Wang
    Zhen Yuan
    Pengyu Zhang
    Zhixue Liu
    Tongchao Wang
    Li Wei
    Physiology and Molecular Biology of Plants, 2020, 26 : 705 - 717
  • [43] Genome-wide analysis of NAC transcription factor family in maize under drought stress and rewatering
    Wang, Guorui
    Yuan, Zhen
    Zhang, Pengyu
    Liu, Zhixue
    Wang, Tongchao
    Wei, Li
    PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS, 2020, 26 (04) : 705 - 717
  • [44] Oxidative stress and heat-shock responses in Desulfovibrio vulgaris by genome-wide transcriptomic analysis
    Weiwen Zhang
    David E. Culley
    Mike Hogan
    Luigi Vitiritti
    Fred J. Brockman
    Antonie van Leeuwenhoek, 2006, 90 : 41 - 55
  • [45] Genome-wide investigation of the heat shock transcription factor (Hsf) gene family in Tartary buckwheat (Fagopyrum tataricum)
    Moyang Liu
    Qin Huang
    Wenjun Sun
    Zhaotang Ma
    Li Huang
    Qi Wu
    Zizhong Tang
    Tongliang Bu
    Chenglei Li
    Hui Chen
    BMC Genomics, 20
  • [46] Genome-wide investigation of the heat shock transcription factor (Hsf) gene family in Tartary buckwheat (Fagopyrum tataricum)
    Liu, Moyang
    Huang, Qin
    Sun, Wenjun
    Ma, Zhaotang
    Huang, Li
    Wu, Qi
    Tang, Zizhong
    Bu, Tongliang
    Li, Chenglei
    Chen, Hui
    BMC GENOMICS, 2019, 20 (01)
  • [47] Genome-wide association analysis identifies a candidate gene controlling seed size and yield in Xanthoceras sorbifolium Bunge
    Zhao, Ziquan
    Liang, Chongjun
    Zhang, Wei
    Yang, Yingying
    Bi, Quanxin
    Yu, Haiyan
    Wang, Libing
    HORTICULTURE RESEARCH, 2024, 11 (01)
  • [48] Genome-Wide Analysis of the NAC Transcription Factor Gene Family Reveals Differential Expression Patterns and Cold-Stress Responses in the Woody Plant Prunus mume
    Zhuo, Xiaokang
    Zheng, Tangchun
    Zhang, Zhiyong
    Zhang, Yichi
    Jiang, Liangbao
    Ahmad, Sagheer
    Sun, Lidan
    Wang, Jia
    Cheng, Tangren
    Zhang, Qixiang
    GENES, 2018, 9 (10)
  • [49] Genome-wide Identification and Characteristics Analysis of Melon (Cucumis melo L.) MYB Transcription Factors and Their Responses to Autotoxicity and Saline-alkali Stress
    Yifang Zhang
    Ziyan Xie
    Fangyan Wang
    Cheng Zhong
    Yumo Liu
    Zhiying Li
    Gefu Wang-Pruski
    Zhizhong Zhang
    Tropical Plant Biology, 2022, 15 : 93 - 109
  • [50] Genome-wide Identification and Characteristics Analysis of Melon (Cucumis melo L.) MYB Transcription Factors and Their Responses to Autotoxicity and Saline-alkali Stress
    Zhang, Yifang
    Xie, Ziyan
    Wang, Fangyan
    Zhong, Cheng
    Liu, Yumo
    Li, Zhiying
    Wang-Pruski, Gefu
    Zhang, Zhizhong
    TROPICAL PLANT BIOLOGY, 2022, 15 (01) : 93 - 109