Image Denoising Using Convolutional Sparse Coding Network with Dry Friction

被引:0
|
作者
Zhang, Yali [1 ]
Wang, Xiaofan [1 ]
Wang, Fengpin [1 ]
Wang, Jinjia [1 ,2 ]
机构
[1] Yanshan Univ, Sch Informat Sci & Engn, Qinhuangdao 066004, Peoples R China
[2] Yanshan Univ, Hebei Key Lab Informat Transmiss & Signal Proc, Qinhuangdao 066004, Peoples R China
来源
关键词
Image denoising; Convolutional sparse coding; Iterative shrinkage thresholding algorithms; Dry friction; ALGORITHMS;
D O I
10.1007/978-3-031-26319-4_35
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Convolutional sparse coding model has been successfully used in some tasks such as signal or image processing and classification. The recently proposed supervised convolutional sparse coding network (CSCNet) model based on the Minimum Mean Square Error (MMSE) approximation shows the similar PSNR value for image denoising problem with state of the art methods while using much fewer parameters. The CSCNet uses the learning convolutional iterative shrinkage-thresholding algorithms (LISTA) based on the convolutional dictionary setting. However, LISTA methods are known to converge to local minima. In this paper we proposed one novel algorithm based on LISTA with dry friction, named LISTDFA. The dry friction enters the LISTDFA algorithm through proximal mapping. Due to the nature of dry friction, the LISTDFA algorithm is proven to converge in a finite time. The corresponding iterative neural network preserves the computational simplicity of the original CSCNet, and can reach a better local minima practically.
引用
收藏
页码:587 / 601
页数:15
相关论文
共 50 条
  • [21] Methods for image denoising using convolutional neural network: a review
    Ilesanmi, Ademola E.
    Ilesanmi, Taiwo O.
    COMPLEX & INTELLIGENT SYSTEMS, 2021, 7 (05) : 2179 - 2198
  • [22] Image denoising using block matching and convolutional neural network
    Selvanambi, Ramani
    Victor, Akila
    Arunkumar, Gurunathan
    Kannadasan, Rajendran
    Sarawathi, Elumalai
    Rajkumar, Soundrapandiyan
    JOURNAL OF ELECTRONIC IMAGING, 2022, 31 (04)
  • [23] Image Denoising using Deep Learning: Convolutional Neural Network
    Ghose, Shreyasi
    Singh, Nishi
    Singh, Prabhishek
    PROCEEDINGS OF THE CONFLUENCE 2020: 10TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING, DATA SCIENCE & ENGINEERING, 2020, : 511 - 517
  • [24] A Two-Stage Convolutional Sparse Coding Network for Hyperspectral Image Classification
    Cheng, Chunbo
    Peng, Jiangtao
    Cui, Wenjing
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20
  • [25] Image classification via convolutional sparse coding
    Nozaripour, Ali
    Soltanizadeh, Hadi
    VISUAL COMPUTER, 2023, 39 (05): : 1731 - 1744
  • [26] Image classification via convolutional sparse coding
    Ali Nozaripour
    Hadi Soltanizadeh
    The Visual Computer, 2023, 39 : 1731 - 1744
  • [27] Adaptive sparse coding on PCA dictionary for image denoising
    Liu, Qian
    Zhang, Caiming
    Guo, Qiang
    Xu, Hui
    Zhou, Yuanfeng
    VISUAL COMPUTER, 2016, 32 (04): : 535 - 549
  • [28] STRUCTURED SPARSE CODING FOR IMAGE DENOISING OR PATTERN DETECTION
    Karygianni, Sofia
    Frossard, Pascal
    2014 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2014,
  • [29] Image Denoising via Robust Simultaneous Sparse Coding
    Li, Lei
    Kan, Jiangming
    Li, Wenbin
    JOURNAL OF COMPUTERS, 2014, 9 (06) : 1418 - 1425
  • [30] Adaptive sparse coding on PCA dictionary for image denoising
    Qian Liu
    Caiming Zhang
    Qiang Guo
    Hui Xu
    Yuanfeng Zhou
    The Visual Computer, 2016, 32 : 535 - 549