Image Denoising Using Convolutional Sparse Coding Network with Dry Friction

被引:0
|
作者
Zhang, Yali [1 ]
Wang, Xiaofan [1 ]
Wang, Fengpin [1 ]
Wang, Jinjia [1 ,2 ]
机构
[1] Yanshan Univ, Sch Informat Sci & Engn, Qinhuangdao 066004, Peoples R China
[2] Yanshan Univ, Hebei Key Lab Informat Transmiss & Signal Proc, Qinhuangdao 066004, Peoples R China
来源
关键词
Image denoising; Convolutional sparse coding; Iterative shrinkage thresholding algorithms; Dry friction; ALGORITHMS;
D O I
10.1007/978-3-031-26319-4_35
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Convolutional sparse coding model has been successfully used in some tasks such as signal or image processing and classification. The recently proposed supervised convolutional sparse coding network (CSCNet) model based on the Minimum Mean Square Error (MMSE) approximation shows the similar PSNR value for image denoising problem with state of the art methods while using much fewer parameters. The CSCNet uses the learning convolutional iterative shrinkage-thresholding algorithms (LISTA) based on the convolutional dictionary setting. However, LISTA methods are known to converge to local minima. In this paper we proposed one novel algorithm based on LISTA with dry friction, named LISTDFA. The dry friction enters the LISTDFA algorithm through proximal mapping. Due to the nature of dry friction, the LISTDFA algorithm is proven to converge in a finite time. The corresponding iterative neural network preserves the computational simplicity of the original CSCNet, and can reach a better local minima practically.
引用
收藏
页码:587 / 601
页数:15
相关论文
共 50 条
  • [1] Deep side group sparse coding network for image denoising
    Yin, Haitao
    Wang, Tianyou
    IET IMAGE PROCESSING, 2023, 17 (01) : 1 - 11
  • [2] Image Denoising using Convolutional Neural Network
    Mehmood, Asif
    PATTERN RECOGNITION AND TRACKING XXXI, 2020, 11400
  • [3] Denoising convolutional neural network inspired via multi-layer convolutional sparse coding
    Wen, Zejia
    Wang, Hailin
    Gong, Yingfan
    Wang, Jianjun
    JOURNAL OF ELECTRONIC IMAGING, 2021, 30 (02)
  • [4] Image fusion using online convolutional sparse coding
    Zhang C.
    Zhang Z.
    Feng Z.
    Journal of Ambient Intelligence and Humanized Computing, 2023, 14 (10) : 13559 - 13570
  • [5] Multimodal image enhancement using convolutional sparse coding
    Awais Ahmed
    She Kun
    Junaid Ahmed
    Shaukat Hayat
    Abdullah Aman Khan
    Multimedia Systems, 2023, 29 : 2099 - 2110
  • [6] Multimodal image enhancement using convolutional sparse coding
    Ahmed, Awais
    Kun, She
    Ahmed, Junaid
    Hayat, Shaukat
    Khan, Abdullah Aman
    MULTIMEDIA SYSTEMS, 2023, 29 (04) : 2099 - 2110
  • [7] Sparse coding for image denoising using spike and slab prior
    Lu, Xiaoqiang
    Yuan, Yuan
    Yan, Pingkun
    NEUROCOMPUTING, 2013, 106 : 12 - 20
  • [8] Revisiting Convolutional Sparse Coding for Image Denoising: From a Multi-Scale Perspective
    Xu, Jingyi
    Deng, Xin
    Xu, Mai
    IEEE SIGNAL PROCESSING LETTERS, 2022, 29 : 1202 - 1206
  • [9] Facial Image Denoising Using Convolutional Autoencoder Network
    Tun, Naing Min
    Gavrilov, Alexander, I
    Tun, Nyan Linn
    2020 INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING, APPLICATIONS AND MANUFACTURING (ICIEAM), 2020,
  • [10] SPATIAL-SPECTRAL CONVOLUTIONAL SPARSE NEURAL NETWORK FOR HYPERSPECTRAL IMAGE DENOISING
    Xiong, Fengchao
    Ye, Minchao
    Zhou, Jun
    Qian, Yuntao
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 1225 - 1228