Prediction of persistent chronic cough in patients with chronic cough using machine learning
被引:3
|
作者:
Chen, Wansu
论文数: 0引用数: 0
h-index: 0
机构:
Kaiser Permanente Southern Calif, Dept Res & Evaluat, Pasadena, CA 91101 USAKaiser Permanente Southern Calif, Dept Res & Evaluat, Pasadena, CA 91101 USA
Chen, Wansu
[1
]
Schatz, Michael
论文数: 0引用数: 0
h-index: 0
机构:
Kaiser Permanente Southern Calif, Dept Allergy, San Diego, CA 91101 USA
Kaiser Permanente Bernard J Tyson Sch Med, Dept Clin Sci, Pasadena, CA USAKaiser Permanente Southern Calif, Dept Res & Evaluat, Pasadena, CA 91101 USA
Schatz, Michael
[2
,3
]
Zhou, Yichen
论文数: 0引用数: 0
h-index: 0
机构:
Kaiser Permanente Southern Calif, Dept Res & Evaluat, Pasadena, CA 91101 USAKaiser Permanente Southern Calif, Dept Res & Evaluat, Pasadena, CA 91101 USA
Zhou, Yichen
[1
]
Xie, Fagen
论文数: 0引用数: 0
h-index: 0
机构:
Kaiser Permanente Southern Calif, Dept Res & Evaluat, Pasadena, CA 91101 USAKaiser Permanente Southern Calif, Dept Res & Evaluat, Pasadena, CA 91101 USA
Xie, Fagen
[1
]
Bali, Vishal
论文数: 0引用数: 0
h-index: 0
机构:
Merck & Co Inc, Ctr Observat & Real World Evidence CORE, Kenilworth, NJ USAKaiser Permanente Southern Calif, Dept Res & Evaluat, Pasadena, CA 91101 USA
Bali, Vishal
[4
]
Das, Amar
论文数: 0引用数: 0
h-index: 0
机构:
Merck & Co Inc, Ctr Observat & Real World Evidence CORE, Kenilworth, NJ USAKaiser Permanente Southern Calif, Dept Res & Evaluat, Pasadena, CA 91101 USA
Das, Amar
[4
]
Schelfhout, Jonathan
论文数: 0引用数: 0
h-index: 0
机构:
Merck & Co Inc, Ctr Observat & Real World Evidence CORE, Kenilworth, NJ USAKaiser Permanente Southern Calif, Dept Res & Evaluat, Pasadena, CA 91101 USA
Schelfhout, Jonathan
[4
]
Stern, Julie A.
论文数: 0引用数: 0
h-index: 0
机构:
Kaiser Permanente Southern Calif, Dept Res & Evaluat, Pasadena, CA 91101 USAKaiser Permanente Southern Calif, Dept Res & Evaluat, Pasadena, CA 91101 USA
Stern, Julie A.
[1
]
Zeiger, Robert S.
论文数: 0引用数: 0
h-index: 0
机构:
Kaiser Permanente Southern Calif, Dept Allergy, San Diego, CA 91101 USA
Kaiser Permanente Bernard J Tyson Sch Med, Dept Clin Sci, Pasadena, CA USAKaiser Permanente Southern Calif, Dept Res & Evaluat, Pasadena, CA 91101 USA
Zeiger, Robert S.
[2
,3
]
机构:
[1] Kaiser Permanente Southern Calif, Dept Res & Evaluat, Pasadena, CA 91101 USA
[2] Kaiser Permanente Southern Calif, Dept Allergy, San Diego, CA 91101 USA
[3] Kaiser Permanente Bernard J Tyson Sch Med, Dept Clin Sci, Pasadena, CA USA
[4] Merck & Co Inc, Ctr Observat & Real World Evidence CORE, Kenilworth, NJ USA
Introduction The aim of this study was to develop and validate prediction models for risk of persistent chronic cough (PCC) in patients with chronic cough (CC). This was a retrospective cohort study. Methods Two retrospective cohorts of patients 18-85 years of age were identified for years 2011-2016: a specialist cohort which included CC patients diagnosed by specialists, and an event cohort which comprised CC patients identified by at least three cough events. A cough event could be a cough diagnosis, dispensing of cough medication or any indication of cough in clinical notes. Model training and validation were conducted using two machine-learning approaches and 400+ features. Sensitivity analyses were also conducted. PCC was defined as a CC diagnosis or any two (specialist cohort) or three (event cohort) cough events in year 2 and again in year 3 after the index date. Results 8581 and 52 010 patients met the eligibility criteria for the specialist and event cohorts (mean age 60.0 and 55.5 years), respectively. 38.2% and 12.4% of patients in the specialist and event cohorts, respectively, developed PCC. The utilisation-based models were mainly based on baseline healthcare utilisations associated with CC or respiratory diseases, while the diagnosis-based models incorporated traditional parameters including age, asthma, pulmonary fibrosis, obstructive pulmonary disease, gastrooesophageal reflux, hypertension and bronchiectasis. All final models were parsimonious (five to seven predictors) and moderately accurate (area under the curve: 0.74-0.76 for utilisation-based models and 0.71 for diagnosis-based models). Conclusions The application of our risk prediction models may be used to identify high-risk PCC patients at any stage of the clinical testing/evaluation to facilitate decision making.
机构:
Univ Manchester, Ctr Resp Med & Allergy, Manchester, Lancs, England
Univ Hosp South Manchester NHS Fdn Trust, Manchester, Lancs, England
Manchester Acad Hlth Sci Ctr, Manchester, Lancs, EnglandUniv Manchester, Ctr Resp Med & Allergy, Manchester, Lancs, England
Hilton, Emma
Marsden, Paul
论文数: 0引用数: 0
h-index: 0
机构:
Univ Manchester, Ctr Resp Med & Allergy, Manchester, Lancs, England
Lancashire Teaching Hosp NHS Fdn Trust, Preston, Lancs, EnglandUniv Manchester, Ctr Resp Med & Allergy, Manchester, Lancs, England
Marsden, Paul
Thurston, Andrew
论文数: 0引用数: 0
h-index: 0
机构:
Univ Manchester, Ctr Resp Med & Allergy, Manchester, Lancs, England
Univ Hosp South Manchester NHS Fdn Trust, Manchester, Lancs, England
Manchester Acad Hlth Sci Ctr, Manchester, Lancs, EnglandUniv Manchester, Ctr Resp Med & Allergy, Manchester, Lancs, England
Thurston, Andrew
Kennedy, Stephen
论文数: 0引用数: 0
h-index: 0
机构:
Univ Hosp South Manchester NHS Fdn Trust, Manchester, Lancs, England
Manchester Acad Hlth Sci Ctr, Manchester, Lancs, England
Lancashire Teaching Hosp NHS Fdn Trust, Preston, Lancs, EnglandUniv Manchester, Ctr Resp Med & Allergy, Manchester, Lancs, England
Kennedy, Stephen
Decalmer, Samantha
论文数: 0引用数: 0
h-index: 0
机构:
Univ Manchester, Ctr Resp Med & Allergy, Manchester, Lancs, England
Salford Royal NHS Fdn Trust, Salford, Lancs, EnglandUniv Manchester, Ctr Resp Med & Allergy, Manchester, Lancs, England
Decalmer, Samantha
Smith, Jaclyn A.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Manchester, Ctr Resp Med & Allergy, Manchester, Lancs, England
Univ Hosp South Manchester NHS Fdn Trust, Manchester, Lancs, England
Manchester Acad Hlth Sci Ctr, Manchester, Lancs, EnglandUniv Manchester, Ctr Resp Med & Allergy, Manchester, Lancs, England