Determination of Cd2+ and Pb2+ by polyindole/Mn2O3 nanocomposite and polyindole/Mn2O3/polyaniline nanofibers modified glassy carbon electrode

被引:5
|
作者
Yousefi, Azar [1 ]
Aghaie, Hossein [1 ]
Giahi, Masoud [2 ]
Maleknia, Laleh [3 ]
机构
[1] Islamic Azad Univ, Dept Chem, Sci & Res Branch, Tehran, Iran
[2] Islamic Azad Univ, Dept Chem, South Tehran Branch, Tehran, Iran
[3] Islamic Azad Univ, Dept Biomed Engn, South Tehran Branch, Tehran, Iran
关键词
Heavy metal ions; Polyaniline; Differential pulse anodic stripping voltammetry; Polyindole; HEAVY-METAL IONS; ELECTROCHEMICAL DETERMINATION; LEAD; SENSOR; POLYANILINE; REMOVAL;
D O I
10.1007/s11696-022-02343-5
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this paper, the surface of the glassy carbon electrode was modified by polyindole (PIN)/Mn2O3 nanocomposite and PIN/Mn2O3/polyaniline (PANI) nanofibers and electrochemical behavior toward the sensing of Cd2+ and Pb2+ was investigated using differential pulse anodic stripping voltammetry. The amount of (PIN)/Mn2O3 nanocomposite was varied to find the best performance. In addition, cyclic voltammetry of ferrocyanide was used to describe the behavior of modified electrodes and the diffusion coefficient for PIN/Mn2O3 and PIN/Mn2O3/PANI samples containing 5%w/w (PIN)/Mn2O3 nanocomposite was 8.05 x 10(-7) and 1.29 x 10(-6) cm(2) s(-1), respectively. The synergistic effect of PANI and PIN/Mn2O3 in nanofibers structure enhances the accumulation efficiency and the charge transfer rate of metal ions. Under the optimal conditions, PIN/Mn2O3/PANI nanofibers modified electrode showed good linear relationships for Cd2+ and Pb2+ in a range of 0.05-450 mu g L-1, with the detection limit of 0.05 and 0.02 mu g L-1 for Pb2+ and Cd2+, respectively. The linear range and detection limit for PIN/Mn2O3 nanocomposite modified electrode was 1-200 mu g L(-1)and 9.85 and 10.72 mu g L-1 for Cd2+ and Pb2+, respectively.
引用
收藏
页码:733 / 743
页数:11
相关论文
共 50 条
  • [21] Preparation and Photocatalytic Activity of Mn2O3 Microspheres
    Xia Hong-Yu
    Hu Lin
    Yao Qi-Zhi
    JOURNAL OF INORGANIC MATERIALS, 2011, 26 (03) : 317 - 320
  • [22] Dielectric planarization using Mn2O3 slurry
    Kishii, S
    Nakamura, K
    Arimoto, Y
    1997 SYMPOSIUM ON VLSI TECHNOLOGY: DIGEST OF TECHNICAL PAPERS, 1997, : 27 - 28
  • [23] Mn2O3薄膜磁学性能研究
    胡苹
    河北北方学院学报(自然科学版), 2015, 31 (04) : 21 - 23
  • [24] Biomineralization Strategy to α-Mn2O3 Hierarchical Nanostructures
    Cao, Huaqiang
    Wu, Xiaoming
    Wang, Guohua
    Yin, Jiefu
    Yin, Gui
    Zhang, Fan
    Liu, Junkun
    JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (39): : 21109 - 21115
  • [25] Mn2O3 nanoflower decorated electrospun carbon nanofibers for efficient hybrid capacitive deionization
    Liu, Yong
    Gao, Xin
    Zhang, Lu
    Shen, Xiaolong
    Du, Xin
    Dou, Xinyue
    Yuan, Xun
    DESALINATION, 2020, 494
  • [26] Preparation and Photocatalytic Properties of Highly Stable Mn:ZnO/Mn2O3 Nanocomposite Photocatalysts
    Bai Minghui
    Liu Xian
    Zhang Qiuping
    Song, Man
    Li Jianhong
    Sun Yifei
    Yu, Fei
    Yuan Huan
    Su Yuanjie
    Xu, Ming
    ACTA PHOTONICA SINICA, 2023, 52 (06)
  • [27] TG study of the dispersion threshold of Mn2O3 on γ-Al2O3
    Liu, J
    Xu, H
    Shen, W
    Pan, X
    Xiang, Y
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 1999, 58 (02): : 309 - 315
  • [28] PHASE EQUILIBRIUM BETWEEN MNO2 AND MN2O3
    FUKUNAGA, O
    TAKAHASHI, K
    FUJITA, T
    YOSHIMOT.J
    MATERIALS RESEARCH BULLETIN, 1969, 4 (05) : 315 - +
  • [29] HYPERFINE INTERACTION OF CD-111 IMPURITIES IN MN2O3, MN3O4 AND BETA-FE2O3
    WIARDA, D
    WENZEL, T
    UHRMACHER, M
    LIEB, KP
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 1992, 53 (09) : 1199 - 1209
  • [30] MNO(MN2O3)-P2O5-H2O SYSTEMS
    GOLOSHCHAPOV, MV
    MARTYNENKO, BV
    ZHURNAL NEORGANICHESKOI KHIMII, 1976, 21 (05): : 1357 - 1360