Modified Attractive Inverse-Square Potential in the Induced Electric Dipole System

被引:2
|
作者
Bakke, K. [1 ]
Ramos, J. G. G. S. [1 ]
机构
[1] Univ Fed Paraiba, Dept Fis, Caixa Postal 5008, BR-58051900 Joao Pessoa, PB, Brazil
关键词
BOUND-STATES; QUANTUM-MECHANICS; ATOMS;
D O I
10.1007/s00601-023-01873-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We examine the spatial distribution of electric charges within an extended, non-conductive cylinder featuring an inner radius denoted as r0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r_{0}$$\end{document}. Our investigation unveils the emergence of a distinct modified attractive-inverse square potential, arising from the intricate interplay between the electric field and the induced electric dipole moment of a neutral particle. This modified potential notably departs from the conventional inverse-square potential, showcasing an additional term proportional to r-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r<^>{-1}$$\end{document}. As a result, we present compelling evidence for the realization of a discrete energy spectrum within this intricate system.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] The Possible Emergence of an Attractive Inverse-Square Law from the Wave-Nature of Particles
    Zhang, Dong
    Kroupa, Pavel
    Pflamm-Altenburg, Jan
    Schmid, Manfred
    Advances in High Energy Physics, 2022, 2022
  • [32] Sobolev spaces adapted to the Schrodinger operator with inverse-square potential
    Killip, R.
    Miao, C.
    Visan, M.
    Zhang, J.
    Zheng, J.
    MATHEMATISCHE ZEITSCHRIFT, 2018, 288 (3-4) : 1273 - 1298
  • [33] Eigenfunction expansions for the Schrödinger equation with an inverse-square potential
    A. G. Smirnov
    Theoretical and Mathematical Physics, 2016, 187 : 762 - 781
  • [34] Strichartz estimates for the wave and Schrodinger equations with the inverse-square potential
    Burq, N
    Planchon, F
    Stalker, JG
    Tahvildar-Zadeh, AS
    JOURNAL OF FUNCTIONAL ANALYSIS, 2003, 203 (02) : 519 - 549
  • [35] CONTROLLABILITY OF THE HEAT EQUATION WITH AN INVERSE-SQUARE POTENTIAL LOCALIZED ON THE BOUNDARY
    Cazacu, Cristian
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2014, 52 (04) : 2055 - 2089
  • [36] Scattering theory for nonlinear Schrodinger equations with inverse-square potential
    Zhang, Junyong
    Zheng, Jiqiang
    JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 267 (08) : 2907 - 2932
  • [37] The Possible Emergence of an Attractive Inverse-Square Law from the Wave-Nature of Particles
    Zhang, Dong
    Kroupa, Pavel
    Pflamm-Altenburg, Jan
    Schmid, Manfred
    ADVANCES IN HIGH ENERGY PHYSICS, 2022, 2022
  • [38] Uniform resolvent estimates for Schrodinger operator with an inverse-square potential
    Mizutani, Haruya
    Zhang, Junyong
    Zheng, Jiqiang
    JOURNAL OF FUNCTIONAL ANALYSIS, 2020, 278 (04)
  • [39] On a Semilinear Inequality with Dunkl Laplacian and Inverse-Square Potential on a Ball
    Jleli, Mohamed
    Samet, Bessem
    Zeng, Shengda
    RESULTS IN MATHEMATICS, 2025, 80 (01)
  • [40] Coupling constant dependence for the Schrodinger equation with an inverse-square potential
    Smirnov, A. G.
    ADVANCES IN OPERATOR THEORY, 2021, 6 (02)