Tumor and immune cell types interact to produce heterogeneous phenotypes of pediatric high-grade glioma

被引:4
|
作者
DeSisto, John [1 ,4 ]
Donson, Andrew M. [1 ]
Griesinger, Andrea M. [1 ]
Fu, Rui [2 ]
Riemondy, Kent [2 ]
Levy, Jean Mulcahy [1 ,5 ]
Siegenthaler, Julie A. [3 ,4 ]
Foreman, Nicholas K. [1 ,5 ]
Vibhakar, Rajeev [1 ,5 ]
Green, Adam L. [1 ,5 ,6 ]
机构
[1] Univ Colorado Anschutz Med Campus, Morgan Adams Fdn, Brain Tumor Res Program, Aurora, CO USA
[2] Univ Colorado Anschutz Med Campus, RNA Biosci Initiat, Aurora, CO USA
[3] Univ Colorado Anschutz Med Campus, Dept Pediat, Sect Dev Biol, Aurora, CO USA
[4] Cell Biol Stem Cells & Dev Grad Program, Aurora, CO USA
[5] Childrens Hosp Colorado, Ctr Canc & Blood Disorders, Aurora, CO USA
[6] Univ Colorado, Dept Pediat, Sch Med, Anschutz Med Campus,12800 E 19th Ave,Mail Stop 830, Aurora, CO 80045 USA
关键词
glioma; pediatric; scRNA-Seq; PLURIPOTENT; PROGRESSION; REVEALS; MAPS;
D O I
10.1093/neuonc/noad207
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background. Pediatric high-grade gliomas (PHGG) are aggressive brain tumors with 5-year survival rates ranging from <2% to 20% depending upon subtype. PHGG presents differently from patient to patient and is intratumorally heterogeneous, posing challenges in designing therapies. We hypothesized that heterogeneity occurs because PHGG comprises multiple distinct tumor and immune cell types in varying proportions, each of which may influence tumor characteristics. Methods. We obtained 19 PHGG samples from our institution's pediatric brain tumor bank. We constructed a comprehensive transcriptomic dataset at the single-cell level using single-cell RNA-Seq (scRNA-Seq), identified known glial and immune cell types, and performed differential gene expression and gene set enrichment analysis. We conducted multi-channel immunofluorescence (IF) staining to confirm the transcriptomic results. Results. Our PHGG samples included 3 principal predicted tumor cell types: astrocytes, oligodendrocyte progenitors (OPCs), and mesenchymal-like cells (Mes). These cell types differed in their gene expression profiles, pathway enrichment, and mesenchymal character. We identified a macrophage population enriched in mesenchymal and inflammatory gene expression as a possible source of mesenchymal tumor characteristics. We found evidence of T-cell exhaustion and suppression. Conclusions. PHGG comprises multiple distinct proliferating tumor cell types. Microglia-derived macrophages may drive mesenchymal gene expression in PHGG. The predicted Mes tumor cell population likely derives from OPCs. The variable tumor cell populations rely on different oncogenic pathways and are thus likely to vary in their responses to therapy.
引用
收藏
页码:538 / 552
页数:15
相关论文
共 50 条
  • [31] Radiosensitization in Pediatric High-Grade Glioma: Targets, Resistance and Developments
    Metselaar, Dennis S.
    du Chatinier, Aimee
    Stuiver, Iris
    Kaspers, Gertjan J. L.
    Hulleman, Esther
    FRONTIERS IN ONCOLOGY, 2021, 11
  • [32] Signaling pathways and mesenchymal transition in pediatric high-grade glioma
    Michaël H. Meel
    Sophie A. Schaper
    Gertjan J. L. Kaspers
    Esther Hulleman
    Cellular and Molecular Life Sciences, 2018, 75 : 871 - 887
  • [33] Structure and evolution of double minutes in a pediatric high-grade glioma
    Xu, Ke C.
    Ding, Liang
    Chang, Ti-Cheng
    Wang, Shuoguo
    Wang, Yong-Dong
    Mulder, Heather
    Shao, Ying
    Easton, John
    Zhang, Jinghui
    Baker, Suzanne J.
    Wu, Gang
    CANCER RESEARCH, 2018, 78 (13)
  • [34] Characterizing and targeting PDGFRA alterations in pediatric high-grade glioma
    Koschmann, Carl
    Zamler, Daniel
    MacKay, Alan
    Robinson, Dan
    Wu, Yi-Mi
    Doherty, Robert
    Marini, Bernard
    Tran, Dustin
    Garton, Hugh
    Muraszko, Karin
    Robertson, Patricia
    Leonard, Marcia
    Zhao, Lili
    Bixby, Dale
    Peterson, Luke
    Camelo-Piragua, Sandra
    Jones, Chris
    Mody, Rajen
    Lowenstein, Pedro R.
    Castro, Maria G.
    ONCOTARGET, 2016, 7 (40) : 65696 - 65706
  • [35] A multi-institutional experience in pediatric high-grade glioma
    Walston, Steve
    Hamstra, Daniel A.
    Oh, Kevin
    Woods, Gary
    Guiou, Michael
    Olshefski, Randal S.
    Chakravarti, Arnab
    Williams, Terence M.
    FRONTIERS IN ONCOLOGY, 2015, 5
  • [36] Pediatric High-Grade Glioma Patterns of Failure by Molecular Subgroup
    Sudmeier, L. J.
    Morgan, T.
    Mendoza, P.
    Switchenko, J.
    Schreibmann, E.
    Esiashvili, N.
    Eaton, B. R.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2020, 108 (03): : E239 - E239
  • [37] FUSION DETECTION OF PEDIATRIC HIGH-GRADE GLIOMA USING NANOSTRING
    Moreno, Daniel
    Da Silva, Luciane
    De Andrade, Edilene
    Biscassi, Leo
    Bonatelli, Murilo
    Berardinelli, Gustavo
    De Paula, Flavia
    Santana, Iara
    Teixeira, Gustavo
    Evangelista, Adriane
    Mancano, Bruna
    Leal, Leticia
    Reis, Rui
    PEDIATRIC BLOOD & CANCER, 2022, 69 : S307 - S307
  • [38] Recent perspectives of molecular aberrations in pediatric high-grade glioma
    Li, Zhengwei
    Sun, Qingzeng
    Shi, Yingchun
    MINERVA PEDIATRICA, 2020, 72 (02) : 116 - 122
  • [39] UNCOVERING MECHANISMS OF RESISTANCE IN PEDIATRIC HIGH-GRADE GLIOMA (PHGG)
    Mukherji, Devarshi
    Haase, Santiago
    Welch, Joshua
    Lowenstein, Pedro
    Castro, Maria
    NEURO-ONCOLOGY, 2023, 25
  • [40] CHARACTERIZING AND TARGETING PDGFRA ALTERATIONS IN PEDIATRIC HIGH-GRADE GLIOMA
    Koschmann, Carl
    Zamler, Dan
    MacKay, Alan
    Robinson, Dan
    Wu, Yi-Mi
    Doherty, Robert
    Marini, Bernard
    Tran, Dustin
    Garton, Hugh
    Muraszko, Karin
    Robertson, Patricia
    Leonard, Marcia
    Zhao, Lili
    Bixby, Dale
    Peterson, Luke
    Camelo-Piragua, Sandra
    Jones, Chris
    Mody, Rajen
    Lowenstein, Pedro R.
    Castro, Maria G.
    NEURO-ONCOLOGY, 2016, 18 : 75 - 75