On Einstein-reversible mth root Finsler metrics

被引:0
|
作者
Majidi, Jila [1 ]
Tayebi, Akbar [2 ]
Haji-Badali, Ali [1 ]
机构
[1] Univ Bonab, Basic Sci Fac, Dept Math, Bonab, Iran
[2] Univ Qom, Fac Sci, Dept Math, Qom, Iran
关键词
Ricci curvature; Einstein metric; Einstein-reversible metric; mth root metric; (alpha; beta)-metric; SPACES; (ALPHA;
D O I
10.1142/S0219887823500998
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The theory of mth root Finsler metrics has been applied to Biology, Ecology, Gravitation, Seismic ray theory, etc. It is regarded as a direct generalization of Riemannian metric in a sense, namely, the second root metric is a Riemannian metric. On the other hand, the Riemannian curvature faithfully reveals the local geometric properties of a Riemann-Finsler metric. The reversibility of Riemannian and Ricci curvatures of Finsler metrics is an essential concept in Finsler geometry. Here, we study the Riemannian curvature of the class of third and fourth root (alpha,beta)-metrics. Then, we find the necessary and sufficient condition under which a cubic and fourth root (alpha,beta)-metric be Einstein-reversible.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] The Characterizations on a Class of Weakly Weighted Einstein–Finsler Metrics
    Xinyue Cheng
    Hong Cheng
    The Journal of Geometric Analysis, 2023, 33
  • [22] On the Characterization of Conformally Flat Weakly Einstein Finsler Metrics
    Jangir, Seema
    Shanker, Gauree
    KYUNGPOOK MATHEMATICAL JOURNAL, 2023, 63 (04): : 611 - 622
  • [23] On the Class of Einstein Exponential-Type Finsler Metrics
    Tayebi, A.
    Nankali, A.
    Najafi, B.
    JOURNAL OF MATHEMATICAL PHYSICS ANALYSIS GEOMETRY, 2018, 14 (01) : 100 - 114
  • [24] Projectively Flat Fourth Root Finsler Metrics
    Li, Benling
    Shen, Zhongmin
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2012, 55 (01): : 138 - 145
  • [25] On m-th root Finsler metrics
    Tayebi, A.
    Najafi, B.
    JOURNAL OF GEOMETRY AND PHYSICS, 2011, 61 (08) : 1479 - 1484
  • [26] A sphere theorem for non-reversible Finsler metrics
    Rademacher, HB
    MATHEMATISCHE ANNALEN, 2004, 328 (03) : 373 - 387
  • [27] A sphere theorem for non-reversible Finsler metrics
    Hans-Bert Rademacher
    Mathematische Annalen, 2004, 328 : 373 - 387
  • [28] Reversible homogeneous Finsler metrics with positive flag curvature
    Xu, Ming
    Ziller, Wolfgang
    FORUM MATHEMATICUM, 2017, 29 (05) : 1213 - 1226
  • [29] AN IMPORTANT CLASS OF CONFORMALLY FLAT WEAK EINSTEIN FINSLER METRICS
    Chen, Guangzu
    Cheng, Xinyue
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2013, 24 (01)
  • [30] Complex Einstein-Finsler doubly twisted product metrics
    Xiao, Wei
    He, Yong
    Tian, Chang
    Li, Jiahui
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 509 (02)