Phage engineering and phage-assisted CRISPR-Cas delivery to combat multidrug-resistant pathogens

被引:24
|
作者
Khambhati, Khushal [1 ]
Bhattacharjee, Gargi [1 ]
Gohil, Nisarg [1 ]
Dhanoa, Gurneet K. [2 ]
Sagona, Antonia P. [2 ]
Mani, Indra [3 ]
Bui, Nhat Le [4 ]
Chu, Dinh-Toi [4 ,5 ]
Karapurkar, Janardhan Keshav [6 ]
Jang, Su Hwa [6 ,7 ]
Chung, Hee Yong [6 ,7 ,8 ]
Maurya, Rupesh [1 ]
Alzahrani, Khalid J. [9 ]
Ramakrishna, Suresh [6 ]
Singh, Vijai [1 ,8 ]
机构
[1] Indrashil Univ, Sch Sci, Dept Biosci, Rajpur 382715, Gujarat, India
[2] Univ Warwick, Sch Life Sci, Gibbet Hill Campus, Coventry, W Midlands, England
[3] Univ Delhi, Dept Microbiol, Gargi Coll, New Delhi, India
[4] Vietnam Natl Univ, Int Sch, Ctr Biomed & Community Hlth, Hanoi, Vietnam
[5] Vietnam Natl Univ, Int Sch, Fac Sci Appl, Hanoi, Vietnam
[6] Hanyang Univ, Grad Sch Biomed Sci & Engn, Seoul, South Korea
[7] Hanyang Univ, Hanyang Biomed Res Inst, Seoul, South Korea
[8] Hanyang Univ, Coll Med, Seoul, South Korea
[9] Taif Univ, Dept Clin Labs Sci, Coll Appl Med Sci, Taif, Saudi Arabia
基金
新加坡国家研究基金会;
关键词
CRISPR-Cas9; system; infection; microflora; multidrug resistance; pathogens; phage; ESCHERICHIA-COLI; KLEBSIELLA-PNEUMONIAE; LYTIC BACTERIOPHAGES; PESTIS BACTERIOPHAGE; TRIGGERED RELEASE; GLOBAL BURDEN; HOST-RANGE; SALMONELLA; SYSTEMS; EVOLUTION;
D O I
10.1002/btm2.10381
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Antibiotic resistance ranks among the top threats to humanity. Due to the frequent use of antibiotics, society is facing a high prevalence of multidrug resistant pathogens, which have managed to evolve mechanisms that help them evade the last line of therapeutics. An alternative to antibiotics could involve the use of bacteriophages (phages), which are the natural predators of bacterial cells. In earlier times, phages were implemented as therapeutic agents for a century but were mainly replaced with antibiotics, and considering the menace of antimicrobial resistance, it might again become of interest due to the increasing threat of antibiotic resistance among pathogens. The current understanding of phage biology and clustered regularly interspaced short palindromic repeats (CRISPR) assisted phage genome engineering techniques have facilitated to generate phage variants with unique therapeutic values. In this review, we briefly explain strategies to engineer bacteriophages. Next, we highlight the literature supporting CRISPR-Cas9-assisted phage engineering for effective and more specific targeting of bacterial pathogens. Lastly, we discuss techniques that either help to increase the fitness, specificity, or lytic ability of bacteriophages to control an infection.
引用
收藏
页数:23
相关论文
共 50 条
  • [31] Phage-assisted evolution and protein engineering yield compact, efficient prime editors
    Doman, Jordan L.
    Pandey, Smriti
    Neugebauer, Monica E.
    An, Meirui
    Davis, Jessie R.
    Randolph, Peyton B.
    Mcelroy, Amber
    Gao, Xin D.
    Raguram, Aditya
    Richter, Michelle F.
    Everette, Kelcee A.
    Banskota, Samagya
    Tian, Kathryn
    Tao, Y. Allen
    Tolar, Jakub
    Osborn, Mark J.
    Liu, David R.
    CELL, 2023, 186 (18) : 3983 - +
  • [32] Phage-assisted evolution of an adenine base editor with improved Cas domain compatibility and activity
    Richter, Michelle F.
    Zhao, Kevin T.
    Eton, Elliot
    Lapinaite, Audrone
    Newby, Gregory A.
    Thuronyi, Benjamin W.
    Wilson, Christopher
    Koblan, Luke W.
    Zeng, Jing
    Bauer, Daniel E.
    Doudna, Jennifer A.
    Liu, David R.
    NATURE BIOTECHNOLOGY, 2020, 38 (07) : 883 - U84
  • [33] Gold and silver nanoparticles as tools to combat multidrug-resistant pathogens
    Balestri, Arianna
    Cardellini, Jacopo
    Berti, Debora
    CURRENT OPINION IN COLLOID & INTERFACE SCIENCE, 2023, 66
  • [34] Degradation of Phage Transcripts by CRISPR-Associated RNases Enables Type III CRISPR-Cas Immunity
    Jiang, Wenyan
    Samai, Poulami
    Marraffini, Luciano A.
    CELL, 2016, 164 (04) : 710 - 721
  • [35] An alternative mechanism for recruiting Cas2/3 in a phage-encoded CRISPR-Cas system
    Feng, Yue
    Wang, Hao
    NATURE CHEMICAL BIOLOGY, 2024, 20 (11) : 1404 - 1405
  • [36] CRISPR-Cas systems in the marine actinomycete Salinispora: linkages with phage defense, microdiversity and biogeography
    Matthias Wietz
    Natalie Millán-Aguiñaga
    Paul R Jensen
    BMC Genomics, 15
  • [37] A dynamic subpopulation of CRISPR-Cas overexpressers allows Streptococcus pyogenes to rapidly respond to phage
    Stoltzfus, Marie J.
    Workman, Rachael E.
    Keith, Nicholas C.
    Modell, Joshua W.
    NATURE MICROBIOLOGY, 2024, 9 (09): : 2410 - 2421
  • [38] CRISPR-Cas provides limited phage immunity to a prevalent gut bacterium in gnotobiotic mice
    Rasmussen, Torben Solbeck
    Koefoed, Anna Kirstine
    Deng, Ling
    Muhammed, Musemma K.
    Rousseau, Genevieve M.
    Kot, Witold
    Sprotte, Sabrina
    Neve, Horst
    Franz, Charles M. A. P.
    Hansen, Axel Kornerup
    Vogensen, Finn Kvist
    Moineau, Sylvain
    Nielsen, Dennis Sandris
    ISME JOURNAL, 2023, 17 (03): : 432 - 442
  • [39] Comparison of Propionibacterium genomes: CRISPR-Cas systems, phage/plasmid diversity, and insertion sequences
    Özge Kahraman-Ilıkkan
    Archives of Microbiology, 2022, 204
  • [40] CRISPR-Cas provides limited phage immunity to a prevalent gut bacterium in gnotobiotic mice
    Torben Sølbeck Rasmussen
    Anna Kirstine Koefoed
    Ling Deng
    Musemma K. Muhammed
    Geneviève M. Rousseau
    Witold Kot
    Sabrina Sprotte
    Horst Neve
    Charles M.A.P. Franz
    Axel Kornerup Hansen
    Finn Kvist Vogensen
    Sylvain Moineau
    Dennis Sandris Nielsen
    The ISME Journal, 2023, 17 : 432 - 442