A computational study to target necroptosis via RIPK1 inhibition

被引:1
|
作者
Bepari, Asim Kumar [1 ]
Takebayashi, Hirohide [2 ]
Namme, Jannatun Nayem [1 ]
Rahman, Ghazi Muhammad Sayedur [1 ]
Reza, Hasan Mahmud [1 ]
机构
[1] North South Univ, Dept Pharmaceut Sci, Dhaka 1229, Bangladesh
[2] Niigata Univ, Grad Sch Med & Dent Sci, Div Neurobiol & Anat, Niigata, Japan
来源
关键词
RIPK; necroptosis; Marine Natural Products (MNP); in silico; virtual screening; ADMET; molecular dynamics; neurodegeneration; DRUG DISCOVERY; CELL-DEATH; CONTRIBUTES; ABSORPTION; GROMACS; PROTEIN; KINASE; FORM;
D O I
10.1080/07391102.2022.2108900
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The human receptor-interacting serine/threonine-protein kinase 1 (RIPK1) is a critical necroptosis regulator implicated in cancer, psoriasis, ulcerative colitis, rheumatoid arthritis, Alzheimer's disease, and multiple sclerosis. Currently, there are no specific RIPK1 antagonists in clinical practice. In this study, we took a target-based computational approach to identify blood-brain-barrier-permeable potent RIPK1 ligands with novel chemotypes. Using molecular docking, we virtually screened the Marine Natural Products (MNP) library of 14,492 small molecules. Initial 18 hits were subjected to detailed ADMET profiling for bioavailability, brain penetration, druglikeness, and toxicities and eventually yielded 548773-66-6 as the best ligand. RIPK1 548773-66-6 binding was validated through duplicated molecular dynamics (MD) simulations where the co-crystallized ligand L8D served as a reference. Trajectory analysis indicated negligible Root-Mean-Square-Deviations (RMSDs) of the best ligand 548773-66-6 relative to the protein backbone: 0.156 +/- 0.043 nm and 0.296 +/- 0.044 nm (mean +/- standard deviations) in two individual simulations. Visual inspection confirmed that 548773-66-6 occupied the RIPK1 ligand-binding pocket associated with the kinase activation loop. Further computations demonstrated consistent hydrogen bond interactions of the ligand with the residue ASP156. Binding free energy estimation also supported stable interactions of 548773-66-6 and RIPK1. Together, our in silico analysis predicted 548773-66-6 as a novel ligand for RIPK1. Therefore, 548773-66-6 could be a viable lead for inhibiting necroptosis in central nervous system inflammatory disorders.
引用
收藏
页码:6502 / 6517
页数:16
相关论文
共 50 条
  • [21] RIPK1 counteracts ZBP1-mediated necroptosis to inhibit inflammation
    Juan Lin
    Snehlata Kumari
    Chun Kim
    Trieu-My Van
    Laurens Wachsmuth
    Apostolos Polykratis
    Manolis Pasparakis
    Nature, 2016, 540 : 124 - 128
  • [22] Inhibition of RIPK1 kinase does not affect diabetes development: β -Cells survive RIPK1 activation
    Takiishi, Tatiana
    Xiao, Peng
    Franchimont, Marie
    Gilglioni, Eduardo H.
    Arroba, Erick N.
    Gurzov, Esteban N.
    Bertrand, Mathieu J. M.
    Cardozo, Alessandra K.
    MOLECULAR METABOLISM, 2023, 69
  • [23] RIPK1 and RIPK3 mediated necroptosis in hypoxic-ischaemic encephalopathy in rats
    Hu, C.
    Wu, L.
    Zhao, H.
    Lian, Q.
    Ma, D.
    BRITISH JOURNAL OF ANAESTHESIA, 2016, 117 (06) : E846 - E847
  • [24] ZBP1 not RIPK1 mediates tumor necroptosis in breast cancer
    Jin Young Baik
    Zhaoshan Liu
    Delong Jiao
    Hyung-Joon Kwon
    Jiong Yan
    Chamila Kadigamuwa
    Moran Choe
    Ross Lake
    Michael Kruhlak
    Mayank Tandon
    Zhenyu Cai
    Swati Choksi
    Zheng-gang Liu
    Nature Communications, 12
  • [25] RIPK1 mediates axonal degeneration by promoting inflammation and necroptosis in ALS
    Ito, Yasushi
    Ofengeim, Dimitry
    Najafov, Ayaz
    Das, Sudeshna
    Saberi, Shahram
    Li, Ying
    Hitomi, Junichi
    Zhu, Hong
    Chen, Hongbo
    Mayo, Lior
    Geng, Jiefei
    Amin, Palak
    DeWitt, Judy Park
    Mookhtiar, Adnan Kasim
    Florez, Marcus
    Ouchida, Amanda Tomie
    Fan, Jian-bing
    Pasparakis, Manolis
    Kelliher, Michelle A.
    Ravits, John
    Yuan, Junying
    SCIENCE, 2016, 353 (6299) : 603 - 608
  • [26] THE IMPACT OF RIPK1 KINASE INHIBITION ON ATHEROGENESIS
    Puylaert, P.
    Coornaert, I.
    Neutel, C. H. G.
    Bertrand, M. J. M.
    Guns, P-J.
    De Meyer, G.
    Wim, M.
    ATHEROSCLEROSIS, 2022, 355 : E48 - E49
  • [27] RIPK1 counteracts ZBP1-mediated necroptosis to inhibit inflammation
    Lin, Juan
    Kumari, Snehlata
    Kim, Chun
    Van, Trieu-My
    Wachsmuth, Laurens
    Polykratis, Apostolos
    Pasparakis, Manolis
    NATURE, 2016, 540 (7631) : 124 - +
  • [28] RIPK1 is required for ZBP1-driven necroptosis in human cells
    Amusan, Oluwamuyiwa T.
    Wang, Shuqi
    Yin, Chaoran
    Koehler, Heather S.
    Li, Yixun
    Tenev, Tencho
    Wilson, Rebecca
    Bellenie, Benjamin
    Zhang, Ting
    Wang, Jian
    Liu, Chang
    Seong, Kim
    Poorbaghi, Seyedeh L.
    Yates, Joseph
    Shen, Yuchen
    Upton, Jason W.
    Meier, Pascal
    Balachandran, Siddharth
    Guo, Hongyan
    PLOS BIOLOGY, 2025, 23 (02)
  • [29] RIPK1 inhibits ZBP1-driven necroptosis during development
    Kim Newton
    Katherine E. Wickliffe
    Allie Maltzman
    Debra L. Dugger
    Andreas Strasser
    Victoria C. Pham
    Jennie R. Lill
    Merone Roose-Girma
    Søren Warming
    Margaret Solon
    Hai Ngu
    Joshua D. Webster
    Vishva M. Dixit
    Nature, 2016, 540 : 129 - 133
  • [30] RIPK1 inhibits ZBP1-driven necroptosis during development
    Newton, Kim
    Wickliffe, Katherine E.
    Maltzman, Allie
    Dugger, Debra L.
    Strasser, Andreas
    Pham, Victoria C.
    Lill, Jennie R.
    Roose-Girma, Merone
    Warming, Soren
    Solon, Margaret
    Ngu, Hai
    Webster, Joshua D.
    Dixit, Vishva M.
    NATURE, 2016, 540 (7631) : 129 - +