An adaptive cyclical learning rate based hybrid model for Dravidian fake news detection

被引:7
|
作者
Raja, Eduri [1 ]
Soni, Badal [1 ]
Lalrempuii, Candy [1 ]
Borgohain, Samir Kumar [1 ]
机构
[1] Natl Inst Technol Silchar, Silchar 788010, Assam, India
关键词
Attention mechanism; Deep learning; Dravidian-languages; Fake news; Low resource languages;
D O I
10.1016/j.eswa.2023.122768
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Fake news has evolved into a pervasive issue in the era of information overload, influencing public opinion and challenging the credibility of news sources. While various approaches have been proposed to combat fake news, most existing research focuses on high-resource languages, leaving low-resource languages vulnerable to misinformation. In this study, we propose a hybrid deep learning model architecture that integrates dilated temporal convolutional neural networks (DTCN), bidirectional long-short-term memory (BiLSTM), and a contextualized attention mechanism (CAM) to address the problem of detecting fake news in low-resourced Dravidian languages. DTCN is employed to capture temporal dependencies due to its sequential nature, BiLSTM is employed to seize long-range dependencies efficiently, and CAM is used to emphasize important information while downplaying irrelevant content. Additionally, we incorporate an adaptive-based cyclical learning rate with an early stopping mechanism to enhance model convergence. The results demonstrate that the proposed model surpasses the state-of-the-art and baseline models and achieves a higher average accuracy of 93.97% on the Dravidian_Fake dataset in four Dravidian languages.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Fake news detection on social media using Adaptive Optimization based Deep Learning Approach
    T S S.M.
    Sreeja P.S.
    Multimedia Tools and Applications, 2025, 84 (9) : 6091 - 6111
  • [32] Fake news detection based on a hybrid BERT and LightGBM models
    Essa, Ehab
    Omar, Karima
    Alqahtani, Ali
    COMPLEX & INTELLIGENT SYSTEMS, 2023, 9 (06) : 6581 - 6592
  • [33] Fake news detection based on a hybrid BERT and LightGBM models
    Ehab Essa
    Karima Omar
    Ali Alqahtani
    Complex & Intelligent Systems, 2023, 9 : 6581 - 6592
  • [34] Fake News Detection Using BERT Model with Joint Learning
    Wesam Shishah
    Arabian Journal for Science and Engineering, 2021, 46 : 9115 - 9127
  • [35] Fake News Detection Using BERT Model with Joint Learning
    Shishah, Wesam
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2021, 46 (09) : 9115 - 9127
  • [36] Research on Fake News Detection Based on Diffusion Growth Rate
    Chen, Jinyin
    Jia, Chengyu
    Li, Qinfeng
    Zheng, Haibin
    Zhao, Wenhong
    Yan, Mingyuan
    Lin, Changting
    WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2022, 2022
  • [37] Fake News Detection Model Basing on Machine Learning Algorithms
    Taha, Mohammed A.
    Jabar, Haider D. A.
    Mohammed, Widad K.
    BAGHDAD SCIENCE JOURNAL, 2024, 21 (08) : 2771 - 2781
  • [38] Context-Based Fake News Detection Model Relying on Deep Learning Models
    Amer, Eslam
    Kwak, Kyung-Sup
    El-Sappagh, Shaker
    ELECTRONICS, 2022, 11 (08)
  • [39] Supervised Learning for Fake News Detection
    Reis, Julio C. S.
    Correia, Andre
    Murai, Fabricio
    Veloso, Adriano
    Benevenuto, Fabricio
    IEEE INTELLIGENT SYSTEMS, 2019, 34 (02) : 76 - 81
  • [40] Machine Learning-Based Approach for Fake News Detection
    Gururaj H.L.
    Lakshmi H.
    Soundarya B.C.
    Flammini F.
    Janhavi V.
    Journal of ICT Standardization, 2022, 10 (04): : 509 - 530