A Review of ARIMA vs. Machine Learning Approaches for Time Series Forecasting in Data Driven Networks

被引:56
|
作者
Kontopoulou, Vaia I. [1 ]
Panagopoulos, Athanasios D. [2 ]
Kakkos, Ioannis [1 ]
Matsopoulos, George K. [1 ]
机构
[1] Natl Tech Univ Athens, Sch Elect & Comp Engn, Biomed Engn Lab, Athens 15780, Greece
[2] Natl Tech Univ Athens, Sch Elect & Comp Engn, Athens 15780, Greece
来源
FUTURE INTERNET | 2023年 / 15卷 / 08期
关键词
ARIMA; machine learning; deep learning; hybrid; networks; finance; health; weather; MSE; RMSE; MAE; MAPE; HYBRID; MODEL; GRU;
D O I
10.3390/fi15080255
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In the broad scientific field of time series forecasting, the ARIMA models and their variants have been widely applied for half a century now due to their mathematical simplicity and flexibility in application. However, with the recent advances in the development and efficient deployment of artificial intelligence models and techniques, the view is rapidly changing, with a shift towards machine and deep learning approaches becoming apparent, even without a complete evaluation of the superiority of the new approach over the classic statistical algorithms. Our work constitutes an extensive review of the published scientific literature regarding the comparison of ARIMA and machine learning algorithms applied to time series forecasting problems, as well as the combination of these two approaches in hybrid statistical-AI models in a wide variety of data applications (finance, health, weather, utilities, and network traffic prediction). Our review has shown that the AI algorithms display better prediction performance in most applications, with a few notable exceptions analyzed in our Discussion and Conclusions sections, while the hybrid statistical-AI models steadily outperform their individual parts, utilizing the best algorithmic features of both worlds.
引用
收藏
页数:31
相关论文
共 50 条
  • [31] A machine learning approach for forecasting hierarchical time series
    Mancuso, Paolo
    Piccialli, Veronica
    Sudoso, Antonio M.
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 182
  • [32] Applied Machine Learning Methods for Time Series Forecasting
    Pang, Linsey
    Liu, Wei
    Wu, Lingfei
    Xie, Kexin
    Guo, Stephen
    Chalapathy, Raghav
    Wen, Musen
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, : 5175 - 5176
  • [33] Data Driven Financial Time-Series Forecasting
    Zhong, Qiang
    Li, Dan
    SEVENTH WUHAN INTERNATIONAL CONFERENCE ON E-BUSINESS, VOLS I-III: UNLOCKING THE FULL POTENTIAL OF GLOBAL TECHNOLOGY, 2008, : 1744 - 1749
  • [34] Time series forecasting of total daily solar energy generation: A comparative analysis between ARIMA and machine learning techniques
    Atique, Sharif
    Noureen, Subrina
    Roy, Vishwajit
    Bayne, Stephen
    Macfie, Joshua
    PROCEEDINGS OF THE 2020 IEEE GREEN TECHNOLOGIES CONFERENCE (GREENTECH), 2020, : 181 - 186
  • [35] Modeling and forecasting electricity consumption amid the COVID-19 pandemic: Machine learning vs. nonlinear econometric time series models
    Charfeddine, Lanouar
    Zaidan, Esmat
    Alban, Ahmad Qadeib
    Bennasr, Hamdi
    Abulibdeh, Ammar
    SUSTAINABLE CITIES AND SOCIETY, 2023, 98
  • [36] A Comparative Simulation Study of Classical and Machine Learning Techniques for Forecasting Time Series Data
    Iaousse, Mbarek
    Jouilil, Youness
    Bouincha, Mohamed
    Mentagui, Driss
    INTERNATIONAL JOURNAL OF ONLINE AND BIOMEDICAL ENGINEERING, 2023, 19 (08) : 56 - 65
  • [37] Effective probability forecasting for time series data using standard machine learning techniques
    Lindsay, D
    Cox, S
    PATTERN RECOGNITION AND DATA MINING, PT 1, PROCEEDINGS, 2005, 3686 : 35 - 44
  • [38] Integrating Machine Learning and Stochastic Pattern Analysis for the Forecasting of Time-Series Data
    Khan A.B.F.
    Kamalakannan K.
    Ahmed N.S.S.
    SN Computer Science, 4 (5)
  • [39] Impact of Training and Testing Data Splits on Accuracy of Time Series Forecasting in Machine Learning
    Medar, Ramesh
    Rajpurohit, Vijay S.
    Rashmi, B.
    2017 INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATION, CONTROL AND AUTOMATION (ICCUBEA), 2017,
  • [40] APPROACHES TO THE SOLUTION OF THE PROBLEM OF FORECASTING TIME SERIES WITH NEUTRON NETWORKS
    Rudakov, A. S.
    BIZNES INFORMATIKA-BUSINESS INFORMATICS, 2008, 6 (04): : 29 - 34