AUTOMATED ACUTE LYMPHOBLASTIC LEUKEMIA CELL CLASSIFICATION USING OPTIMIZED CONVOLUTIONAL NEURAL NETWORK

被引:0
|
作者
Choudhury, Taffazul H. [1 ]
Choudhury, Bismita [1 ]
机构
[1] Assam town Univ, Comp Sci & Engn Fac Engn & Technol, Guwahati, Assam, Thailand
来源
关键词
Acute lymphoblastic leukemia; Blast cell; Classification; Deep learning; Machine learning;
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Acute lymphoblastic leukemia (ALL) is the most common variant of paediatric cancer that creates numerous immature white blood cells affecting the bone marrow. Manual diagnosis of leukemia from microscopic evaluation of stained sample slides is an exhausting process, which is less accurate and susceptible to human errors. Additionally, identifying the leukemic blast cells under the microscope is complicated due to morphological similarity with the normal cell images. In this paper, we proposed an automated method to analyse the blood smear images using Local Binary Pattern (LBP) and classify the leukemic blast cells and normal cells. We have analysed the performance of machine learning and deep learning models such as Support Vector Machine (SVM), k-Nearest Neighbor algorithm (kNN), Artificial Neural Network (ANN), and Convolutional Neural Network (CNN). For classifying ALL and normal cell images, kNN achieved an accuracy of 94.4%, SVM, and ANN achieved an accuracy of 98.6%, and CNN achieved an accuracy of 99.6%. SVM achieved the highest sensitivity of 100%.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Optimized convolutional neural network for the classification of lung cancer
    Paikaray, Divya
    Mehta, Ashok Kumar
    Khan, Danish Ali
    JOURNAL OF SUPERCOMPUTING, 2024, 80 (02): : 1973 - 1989
  • [22] Optimized convolutional neural network for the classification of lung cancer
    Divya Paikaray
    Ashok Kumar Mehta
    Danish Ali Khan
    The Journal of Supercomputing, 2024, 80 : 1973 - 1989
  • [23] Automated detection and classification of acute vertebral body fractures using a convolutional neural network on computed tomography
    Zhang, Jianlun
    Liu, Feng
    Xu, Jingxu
    Zhao, Qingqing
    Huang, Chencui
    Yu, Yizhou
    Yuan, Huishu
    FRONTIERS IN ENDOCRINOLOGY, 2023, 14
  • [24] Motor Imagery EEG Signal Classification Using Optimized Convolutional Neural Network
    Thiyam, Deepa Beeta
    Raymond, Shelishiyah
    Avasarala, Padmanabha Sarma
    PRZEGLAD ELEKTROTECHNICZNY, 2024, 100 (08): : 273 - 279
  • [25] Multilevel Classification of Drowsiness States using ECG with Optimized Convolutional Neural Network
    Taki, Kentaro
    Ma, Jianhua
    Guo, Ao
    Ma, Muxin
    Qi, Alex
    2023 IEEE INTERNATIONAL CONFERENCES ON INTERNET OF THINGS, ITHINGS IEEE GREEN COMPUTING AND COMMUNICATIONS, GREENCOM IEEE CYBER, PHYSICAL AND SOCIAL COMPUTING, CPSCOM IEEE SMART DATA, SMARTDATA AND IEEE CONGRESS ON CYBERMATICS,CYBERMATICS, 2024, : 437 - 443
  • [26] Texture classification using convolutional neural network optimized with whale optimization algorithm
    Dixit, Ujjawal
    Mishra, Apoorva
    Shukla, Anupam
    Tiwari, Ritu
    SN APPLIED SCIENCES, 2019, 1 (06):
  • [27] Texture classification using convolutional neural network optimized with whale optimization algorithm
    Ujjawal Dixit
    Apoorva Mishra
    Anupam Shukla
    Ritu Tiwari
    SN Applied Sciences, 2019, 1
  • [28] An Optimized Approach to Vehicle-Type Classification Using a Convolutional Neural Network
    Habib, Shabana
    Khan, Noreen Fayyaz
    CMC-COMPUTERS MATERIALS & CONTINUA, 2021, 69 (03): : 3321 - 3335
  • [29] Optimizing the classification of acute lymphoblastic leukemia and acute myeloid leukemia samples using artificial neural networks
    Zong, Nuannuan
    Adjouadi, Malek
    Ayala, Melvin
    BIOMEDICAL SCIENCES INSTRUMENTATION, VOL 42, 2006, 42 : 261 - 266
  • [30] Integration of optimized neural network and convolutional neural network for automated brain tumor detection
    Thangarajan, Sathies Kumar
    Chokkalingam, Arun
    SENSOR REVIEW, 2021, 41 (01) : 16 - 34