A deep learning-based image reconstruction method for USCT that employs multimodality inputs

被引:1
|
作者
Jeong, Gangwon [1 ]
Li, Fu [1 ]
Villa, Umberto [2 ]
Anastasio, Mark A. [1 ]
机构
[1] Univ Illinois UrbanaChampaign, Dept Bioengn, Champaign, IL 61801 USA
[2] Univ Texas Austin, Oden Inst, Austin, TX 78712 USA
来源
MEDICAL IMAGING 2023 | 2023年 / 12470卷
基金
美国国家卫生研究院;
关键词
Ultrasound computed tomography; traveltime tomography; reflection tomography; full-waveform inversion; deep learning; ULTRASOUND; TOMOGRAPHY;
D O I
10.1117/12.2654564
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Ultrasound computed tomography (USCT) has the potential to detect breast cancer by measuring tissue acoustic properties such as speed-of-sound (SOS). Current USCT image reconstruction methods for SOS fall into two categories, each with its own limitations. Ray-based methods are computationally efficient but suffer from low spatial resolution due to neglecting scattering effects, while full-waveform inversion (FWI) methods offer higher spatial resolution but are computationally intensive, limiting their widespread application. To address these issues, a deep learning (DL)-based method is proposed for USCT breast imaging that achieves SOS reconstruction quality comparable to FWI while remaining computationally efficient. This method leverages the computational efficiency and high-quality image reconstruction capabilities of DL-based methods, which have shown promise in various medical image reconstruction problems. Specifically, low-resolution SOS images estimated by ray-based traveltime tomography and reflectivity images from reflection tomography are employed as inputs to a U-Net-based image reconstruction method. These complementary images provide direct SOS information (via traveltime tomography) and tissue boundary information (via reflectivity tomography). The U-Net is trained in a supervised manner to map the two input images into a single, high-resolution image of the SOS map. Numerical studies using realistic numerical breast phantoms show promise for improving image quality compared to naive, single-input U-Net-based approaches, using either traveltime or reflection tomography images as inputs. The proposed DL-based method is computationally efficient and may offer a practical solution for enhancing SOS reconstruction quality, which could potentially improve diagnostic accuracy.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Deep learning-based image reconstruction for TOF PET with DIRECT data partitioning format
    Feng, Tao
    Yao, Shulin
    Xi, Chen
    Zhao, Yizhang
    Wang, Ruimin
    Wu, Shina
    Li, Can
    Xu, Baixuan
    PHYSICS IN MEDICINE AND BIOLOGY, 2021, 66 (16):
  • [32] FDG dose reduction using deep learning-based image reconstruction on PET images
    Akita, Ryuji
    Takauchi, Komei
    Ishibashi, Mana
    Ono, Shogo
    Yokomachi, Kazushi
    Nishimaru, Eiji
    Kiguchi, Masao
    Awai, Kazuo
    JOURNAL OF NUCLEAR MEDICINE, 2024, 65
  • [33] ITERATIVE KERNEL RECONSTRUCTION FOR DEEP LEARNING-BASED BLIND IMAGE SUPER-RESOLUTION
    Yildirim, Suleyman
    Ates, Hasan F.
    Gunturk, Bahadir K.
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 3251 - 3255
  • [34] Image Quality and Diagnostic Performance of Accelerated Shoulder MRI With Deep Learning-Based Reconstruction
    Hahn, Seok
    Yi, Jisook
    Lee, Ho-Joon
    Lee, Yedaun
    Lim, Yun-Jung
    Bang, Jin-Young
    Kim, Hyunwoong
    Lee, Joonsung
    AMERICAN JOURNAL OF ROENTGENOLOGY, 2022, 218 (03) : 506 - 516
  • [35] A Physics-Constrained Deep Learning-Based Image Reconstruction for Electrical Capacitance Tomography
    Jin, Yiqi
    Li, Yi
    Zhang, Maomao
    Peng, Lihui
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73 : 1 - 12
  • [36] Clinical Feasibility of Deep Learning-Based Image Reconstruction on Coronary Computed Tomography Angiography
    Koo, Seul Ah
    Jung, Yunsub
    Um, Kyoung A.
    Kim, Tae Hoon
    Kim, Ji Young
    Park, Chul Hwan
    JOURNAL OF CLINICAL MEDICINE, 2023, 12 (10)
  • [37] Deep learning-based denoising image reconstruction of body magnetic resonance imaging in children
    Pocepcova, Vanda
    Zellner, Michael
    Callaghan, Fraser
    Wang, Xinzeng
    Lohezic, Maelene
    Geiger, Julia
    Kellenberger, Christian Johannes
    PEDIATRIC RADIOLOGY, 2025,
  • [38] Deep learning-based hyperspectral image reconstruction for quality assessment of agro-product
    Ahmed, Md. Toukir
    Monjur, Ocean
    Kamruzzaman, Mohammed
    JOURNAL OF FOOD ENGINEERING, 2024, 382
  • [39] Deep Learning-Based Tomographic Image Reconstruction with Ultra-Sparse Projection Views
    Shen, L.
    Zhao, W.
    Dai, X.
    Xing, L.
    MEDICAL PHYSICS, 2019, 46 (06) : E436 - E436
  • [40] Deep learning-based galaxy image deconvolution
    Akhaury, Utsav
    Starck, Jean-Luc
    Jablonka, Pascale
    Courbin, Frederic
    Michalewicz, Kevin
    FRONTIERS IN ASTRONOMY AND SPACE SCIENCES, 2022, 9