On the robustness of inverse scattering for penetrable, homogeneous objects with complicated boundary

被引:2
|
作者
Borges, Carlos [1 ]
Rachh, Manas [2 ]
Greengard, Leslie [2 ,3 ]
机构
[1] Univ Cent Florida, Dept Math, Orlando, FL 32816 USA
[2] Flatiron Inst, New York, NY USA
[3] NYU, Courant Inst Math Sci, New York, NY USA
关键词
inverse scattering; transmission problem; Helmholtz equation; boundary integral equations; recursive linearization; FAST DIRECT SOLVER; INTEGRAL-EQUATIONS; OBSTACLE SCATTERING; DIMENSIONS; ALGORITHM; PRECONDITIONER;
D O I
10.1088/1361-6420/acb2ec
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The acoustic inverse obstacle scattering problem consists of determining the shape of a domain from measurements of the scattered far field due to some set of incident fields (probes). For a penetrable object with known sound speed, this can be accomplished by treating the boundary alone as an unknown curve. Alternatively, one can treat the entire object as unknown and use a more general volumetric representation, without making use of the known sound speed. Both lead to strongly nonlinear and nonconvex optimization problems for which recursive linearization provides a useful framework for numerical analysis. After extending our shape optimization approach developed earlier for impenetrable bodies, we carry out a systematic study of both methods and compare their performance on a variety of examples. Our findings indicate that the volumetric approach is more robust, even though the number of degrees of freedom is significantly larger. We conclude with a discussion of this phenomenon and potential directions for further research.
引用
收藏
页数:22
相关论文
共 50 条