Thermal dissipation of the quantum spin Hall edge states in HgTe/CdTe quantum well

被引:1
|
作者
Fang, Jing-Yun [1 ,2 ]
Zhuang, Yu-Chen [1 ,2 ]
Guo, Ai-Min [3 ]
Sun, Qing-Feng [1 ,2 ,4 ]
机构
[1] Peking Univ, Sch Phys, Int Ctr Quantum Mat, Beijing 100871, Peoples R China
[2] Hefei Natl Lab, Hefei 230088, Peoples R China
[3] Cent South Univ, Sch Phys & Elect, Hunan Key Lab Supermicrostruct & Ultrafast Proc, Changsha 410083, Peoples R China
[4] Beijing Acad Quantum Informat Sci, West Bld 3, 10 Xibeiwang East Rd, Beijing 100193, Peoples R China
关键词
quantum spin Hall effect; thermal dissipation; topology; TRANSITION;
D O I
10.1088/1361-648X/acf826
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Quantum spin Hall effect is characterized by topologically protected helical edge states. Here we study the thermal dissipation of helical edge states by considering two types of dissipation sources. The results show that the helical edge states are dissipationless for normal dissipation sources with or without Rashba spin-orbit coupling in the system, but they are dissipative for spin dissipation sources. Further studies on the energy distribution show that electrons with spin-up and spin-down are both in their own equilibrium without dissipation sources. Spin dissipation sources can couple the two subsystems together to induce voltage drop and non-equilibrium distribution, leading to thermal dissipation, while normal dissipation sources cannot. With the increase of thermal dissipation, the subsystems of electrons with spin-up and spin-down evolve from non-equilibrium finally to mutual equilibrium. In addition, the effects of disorder on thermal dissipation are also discussed. Our work provides clues to reduce thermal dissipation in the quantum spin Hall systems.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Quantum spin Hall effect and topological phase transition in HgTe quantum wells
    Bernevig, B. Andrei
    Hughes, Taylor L.
    Zhang, Shou-Cheng
    SCIENCE, 2006, 314 (5806) : 1757 - 1761
  • [42] The robustness of the quantum spin Hall effect to the thickness fluctuation in HgTe quantum wells
    Guo Huai-Ming
    Zhang Xiang-Lin
    Feng Shi-Ping
    CHINESE PHYSICS B, 2012, 21 (11)
  • [43] Three-dimensional phase diagram of disordered HgTe/CdTe quantum spin-Hall wells
    Prodan, Emil
    PHYSICAL REVIEW B, 2011, 83 (19)
  • [44] The robustness of the quantum spin Hall effect to the thickness fluctuation in HgTe quantum wells
    郭怀明
    张相林
    冯世平
    Chinese Physics B, 2012, (11) : 10 - 15
  • [45] Interaction-induced edge states in HgTe/CdTe quantum wells under a magnetic field
    Chen, Zewei
    Ng, Tai Kai
    PHYSICAL REVIEW B, 2019, 99 (23)
  • [46] Electrical Manipulation and Measurement of Spin Properties of Quantum Spin Hall Edge States
    Vayrynen, Jukka I.
    Ojanen, Teemu
    PHYSICAL REVIEW LETTERS, 2011, 106 (07)
  • [47] Quantum Hall states in inverted HgTe quantum wells probed by transconductance fluctuations
    Mantion, S.
    Avogadri, C.
    Krishtopenko, S. S.
    Gebert, S.
    Ruffenach, S.
    Consejo, C.
    Morozov, S., V
    Mikhailov, N. N.
    Dvoretskii, S. A.
    Knap, W.
    Nanot, S.
    Teppe, F.
    Jouault, B.
    PHYSICAL REVIEW B, 2020, 102 (07)
  • [48] ULTRATHIN QUANTUM-WELLS OF HGTE IN CDTE - INTERFACE STATES
    RODRIGUEZ, FJ
    CAMACHO, A
    QUIROGA, L
    SOLID STATE COMMUNICATIONS, 1991, 77 (09) : 623 - 629
  • [49] Rashba spin splitting in a gated HgTe quantum well
    Schultz, M
    Heinrichs, F
    Merkt, U
    Colin, T
    Skauli, T
    Lovold, S
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 1996, 11 (08) : 1168 - 1172
  • [50] High Mobility HgTe Microstructures for Quantum Spin Hall Studies
    Bendias, Kalle
    Shamim, Saquib
    Herrmann, Oliver
    Budewitz, Andreas
    Shekhar, Pragya
    Leubner, Philipp
    Kleinlein, Johannes
    Bocquillon, Erwann
    Buhmann, Hartmut
    Molenkamp, Laurens W.
    NANO LETTERS, 2018, 18 (08) : 4831 - 4836