Fast 3D Object Measurement Based on Point Cloud Modeling

被引:0
|
作者
Wang, Gang [1 ,2 ,3 ]
Zhou, Mingliang [4 ]
Fang, Bin [4 ]
Zhang, Yugui [5 ]
Guan, Shouqin [2 ]
Ruan, Bin [2 ]
Li, Zelin [2 ]
机构
[1] Gongniu Grp Co Ltd, Ningbo, Peoples R China
[2] NingboTech Univ, Sch Comp & Data Engn, Ningbo, Peoples R China
[3] Zhejiang Univ, Ningbo Inst, Ningbo, Peoples R China
[4] Chongqing Univ, Sch Comp Sci, Chongqing, Peoples R China
[5] Inst Semicond Chinese Acad Sci, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
3D object measurement; point cloud modeling; convex hull; rotation and translation; geometric computation; NETWORKS;
D O I
10.1142/S0218001423550133
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Automated object measurement is becoming increasingly important due to its ability to reduce manual costs, increase production efficiency, and minimize errors in various fields. In this paper, we present a novel approach to three-dimensional (3D) object measurement based on point cloud modeling. Our method introduces a fast point cloud modeling computation framework consisting of five stages: coordinate centralization, rotation and translation, noise filtering, plane projection, and geometric computation. Furthermore, we propose a fast convex hull optimization algorithm to reduce the high complexity problem of traditional convex hull calculation. Our extensive experiments demonstrate that our approach outperforms existing methods in terms of measurement error rate and time savings, with a maximum time saving of 31.03% under certain error conditions.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Robot Assisted 3D Point Cloud Object Registration
    Jerbic, Bojan
    Suligoj, Filip
    Svaco, Marko
    Sekoranja, Bojan
    25TH DAAAM INTERNATIONAL SYMPOSIUM ON INTELLIGENT MANUFACTURING AND AUTOMATION, 2014, 2015, 100 : 847 - 852
  • [32] A Lightweight Model for 3D Point Cloud Object Detection
    Li, Ziyi
    Li, Yang
    Wang, Yanping
    Xie, Guangda
    Qu, Hongquan
    Lyu, Zhuoyang
    APPLIED SCIENCES-BASEL, 2023, 13 (11):
  • [33] Bioinspired point cloud representation: 3D object tracking
    Sergio Orts-Escolano
    Jose Garcia-Rodriguez
    Miguel Cazorla
    Vicente Morell
    Jorge Azorin
    Marcelo Saval
    Alberto Garcia-Garcia
    Victor Villena
    Neural Computing and Applications, 2018, 29 : 663 - 672
  • [34] Pointwise CNN for 3D Object Classification on Point Cloud
    Song, Wei
    Liu, Zishu
    Tian, Yifei
    Fong, Simon
    JOURNAL OF INFORMATION PROCESSING SYSTEMS, 2021, 17 (04): : 787 - 800
  • [35] 3D object detection in voxelized point cloud scene
    Li Rui-long
    Wu Chuan
    Zhu Ming
    CHINESE JOURNAL OF LIQUID CRYSTALS AND DISPLAYS, 2022, 37 (10) : 1355 - 1363
  • [36] Bioinspired point cloud representation: 3D object tracking
    Orts-Escolano, Sergio
    Garcia-Rodriguez, Jose
    Cazorla, Miguel
    Morell, Vicente
    Azorin, Jorge
    Saval, Marcelo
    Garcia-Garcia, Alberto
    Villena, Victor
    NEURAL COMPUTING & APPLICATIONS, 2018, 29 (09): : 663 - 672
  • [37] Object Modeling from 3D Point Cloud Data for Self-Driving Vehicles
    Azam, Shoaib
    Munir, Farzeen
    Rafique, Aasim
    Ko, YeongMin
    Sheri, Ahmad Muqeem
    Jeon, Moongu
    2018 IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), 2018, : 409 - 414
  • [38] Context Matching-Guided Motion Modeling for 3D Point Cloud Object Tracking
    Nie, Jiahao
    Xu, Anqi
    Bao, Zhengyi
    He, Zhiwei
    Lv, Xudong
    Gao, Mingyu
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2025, 35 (03) : 2289 - 2300
  • [39] Research on 3D Object Detection Based on Laser Point Cloud and Image Fusion
    Liu Y.
    Yu F.
    Zhang X.
    Chen Z.
    Qin D.
    Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2022, 58 (24): : 289 - 299
  • [40] Point cloud 3D object detection algorithm based on local information fusion
    Zhang, Linjie
    Chai, Zhilei
    Wang, Ning
    Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science), 2024, 58 (11): : 2219 - 2229