A Survey of Point Cloud Completion

被引:4
|
作者
Zhuang, Zhiyun [1 ]
Zhi, Zhiyang [2 ]
Han, Ting [2 ]
Chen, Yiping [2 ]
Chen, Jun [3 ]
Wang, Cheng [3 ]
Cheng, Ming [3 ]
Zhang, Xinchang [4 ]
Qin, Nannan [5 ]
Ma, Lingfei [6 ]
机构
[1] Natl Univ Def Technol, Coll Meteorol & Oceanog, Changsha 410073, Peoples R China
[2] Sun Yat Sen Univ, Sch Geospatial Engn & Sci, Zhuhai 519082, Peoples R China
[3] Xiamen Univ, Fujian Key Lab Sensing & Comp Smart Cities, Xiamen 361005, Peoples R China
[4] Guangzhou Univ, Sch Geog & Remote Sensing, Guangzhou 510006, Peoples R China
[5] Nanjing Univ Informat Sci & Technol, Sch Remote Sensing & Geomatics Engn, Nanjing 210044, Peoples R China
[6] Cent Univ Finance & Econ, Sch Stat & Math, Beijing 102206, Peoples R China
基金
中国国家自然科学基金;
关键词
Point cloud compression; Shape; Three-dimensional displays; Deep learning; Sensors; Task analysis; Surveys; 3-D data; deep learning; model construction; point cloud completion; review; APPROXIMATE SYMMETRY DETECTION; SHAPE;
D O I
10.1109/JSTARS.2024.3362476
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Point cloud completion is able to estimate the complete point cloud starting from the missing point cloud, which obtains higher quality point cloud data for widely used in remote sensing 3-D modeling, medical imaging, robot vision, etc. The challenge of point clouds mainly lies in the disordered and unstructured nature, which makes point cloud completion difficult. Point cloud completion research can be broadly categorized into traditional approaches and deep learning-based methods. Recently, intensive research has primarily focused on deep learning-based methods, given robustness and efficiency in processing the substantial missing data encountered in complex real world scenes. In addition, deep learning-based methods have higher generalization performance. To stimulate future research, this survey presents a comprehensive review of existing traditional and deep learning-based 3-D point cloud completion methods. This review conducts extensive examinations of each stage of the process, providing a compilation of famous datasets, metrics, and their respective characteristics. In addition, the impacts of subsequent downstream application tasks with or without completion are discussed, followed by some potential future issues in point cloud completion.
引用
收藏
页码:5691 / 5711
页数:21
相关论文
共 50 条
  • [21] FPTNet: Full Point Transformer Network for Point Cloud Completion
    Wang, Chunmao
    Yan, Xuejun
    Wang, Jingjing
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT II, 2024, 14426 : 142 - 154
  • [22] Learning Local Displacements for Point Cloud Completion
    Wang, Yida
    Tan, David Joseph
    Navab, Nassir
    Tombari, Federico
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 1558 - 1567
  • [23] Hyperbolic Chamfer Distance for Point Cloud Completion
    Lin, Fangzhou
    Yue, Yun
    Hou, Songlin
    Yu, Xuechu
    Xu, Yajun
    Yamada, Kazunori D.
    Zhang, Ziming
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 14549 - 14560
  • [24] Relationship-Based Point Cloud Completion
    Zhao, Xi
    Zhang, Bowen
    Wu, Jinji
    Hu, Ruizhen
    Komura, Taku
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2022, 28 (12) : 4940 - 4950
  • [25] Regional dynamic point cloud completion network
    Zhu, Liping
    Yang, Yixuan
    Liu, Kai
    Wu, Silin
    Wang, Bingyao
    Chang, Xianxiang
    PATTERN RECOGNITION LETTERS, 2024, 186 : 322 - 329
  • [26] Are All Point Clouds Suitable for Completion? Weakly Supervised Quality Evaluation Network for Point Cloud Completion
    Shi, Jieqi
    Li, Peiliang
    Chen, Xiaozhi
    Shao le Shen
    2023 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, ICRA, 2023, : 2796 - 2802
  • [27] Sequence Generation Completion Method and Resolution Scaling Network for Point Cloud Completion
    Xu, Jiabo
    Zhang, Yirui
    Zou, Yanni
    Liu, Peter X.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [28] Partial-to-Partial Point Generation Network for Point Cloud Completion
    Zhang, Ziyu
    Yu, Yi
    Da, Feipeng
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2022, 7 (04) : 11990 - 11997
  • [29] An Improved Point Cloud Completion Method Based on SnowflakeNet
    Chen, Ming
    Zhang, Jinming
    Li, Jianliang
    Zhang, Xiaohai
    IEEE ACCESS, 2023, 11 : 59909 - 59916
  • [30] Projected Generative Adversarial Network for Point Cloud Completion
    Tan, Lei
    Lin, Xue
    Niu, Dongmei
    Wang, Daole
    Yin, Miao
    Zhao, Xiuyang
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2023, 33 (02) : 771 - 781