Integrated core-shell assembly of Ni3S2 nanowires and CoMoP nanosheets as highly efficient bifunctional electrocatalysts for overall water splitting

被引:79
|
作者
Poudel, Milan Babu [1 ,2 ]
Logeshwaran, Natarajan [1 ]
Kim, Ae Rhan [1 ]
Karthikeyan, S. C.
Vijayapradeep, Subramanian [1 ]
Yoo, Dong Jin [1 ,2 ]
机构
[1] Jeonbuk Natl Univ, Hydrogen & Fuel Cell Res Ctr, Convers Engn BK21 FOUR Grad Sch, Dept Energy Storage, Jeonju 54896, Jeollabuk Do, South Korea
[2] Jeonbuk Natl Univ, Dept Life Sci, Jeonju 54896, Jeollabuk Do, South Korea
基金
新加坡国家研究基金会;
关键词
Interface engineering; Bifunctional electrocatalyst; Free standing electrode; Water splitting; CoMoP; HIGH-PERFORMANCE; HYDROGEN EVOLUTION; ARRAYS;
D O I
10.1016/j.jallcom.2023.170678
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A paradigm for the rational design of active, abundant, and inexpensive bifunctional electrocatalysts with acceptable electrochemical energy conversion rates has yet to be achieved. Here, we describe the assembly of a superior bifunctional electrocatalyst for oxygen evolution reaction (OER) and hydrogen evolution re-action (HER) activities based on a CoMoP/Ni3S2 multicomponent, heterointerface consisting of a free-standing electrocatalyst prepared by hydrothermal-phosphidation, consisting of one-dimensional Ni3S2 covered with Cereus cactus-like hierarchical CoMoP nanosheets. The resulting three dimensional CoMoP/ Ni3S2 core-shell heterostructure exhibited remarkable HER and OER electrocatalysis, benefiting from modulated electronic structures, rapid mass diffusion, reduced charge-transfer resistance, and a larger electrochemically active surface area. Due to these superior functionalities, the CoMoP/Ni3S2 requires only 96.8 mV (at 1110) for HER catalysis and 270 mV (at 1150) for an OER process. Furthermore, a stable water-splitting device using CoMoP/Ni3S2 for both the anode and cathode required a low cell voltage of 1.54 V at 10 mA cm-2. This work represents a significant advance in interface construction of transition-metal phosphide/sulfide for long-term water splitting.& COPY; 2023 Published by Elsevier B.V.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Correction to: High-Index-Faceted Ni3S2 Branch Arrays as Bifunctional Electrocatalysts for Efficient Water Splitting
    Shengjue Deng
    Kaili Zhang
    Dong Xie
    Yan Zhang
    Yongqi Zhang
    Yadong Wang
    Jianbo Wu
    Xiuli Wang
    Hong Jin Fan
    Xinhui Xia
    Jiangping Tu
    Nano-Micro Letters, 2021, 13
  • [32] Correction to: High-Index-Faceted Ni3S2 Branch Arrays as Bifunctional Electrocatalysts for Efficient Water Splitting
    Shengjue Deng
    Kaili Zhang
    Dong Xie
    Yan Zhang
    Yongqi Zhang
    Yadong Wang
    Jianbo Wu
    Xiuli Wang
    Hong Jin Fan
    Xinhui Xia
    Jiangping Tu
    Nano-Micro Letters, 2021, 13 (01) : 323 - 324
  • [33] Elaborately assembled core-shell structured metal sulfides as a bifunctional catalyst for highly efficient electrochemical overall water splitting
    Guo, Yanna
    Tang, Jing
    Wang, Zhongli
    Kang, Yong-Mook
    Bando, Yoshio
    Yamauchi, Yusuke
    NANO ENERGY, 2018, 47 : 494 - 502
  • [34] Construction of Co2P-Ni3S2/NF Heterogeneous Structural Hollow Nanowires as Bifunctional Electrocatalysts for Efficient Overall Water Splitting
    Li, Hangxuan
    Gao, Xiaolan
    Li, Ge
    SMALL, 2023,
  • [35] Tentacle-like core-shell CoNi2S4/C3N4 bifunctional electrocatalysts for efficient overall alkaline water splitting
    Li, Qingfei
    Li, Nan
    Wu, Mianmian
    Sun, Guifang
    Shen, Wenjing
    Shi, Minghao
    Ma, Jiangquan
    DALTON TRANSACTIONS, 2023, 52 (24) : 8456 - 8465
  • [36] Construction of Co2P-Ni3S2/NF Heterogeneous Structural Hollow Nanowires as Bifunctional Electrocatalysts for Efficient Overall Water Splitting
    Li, Hangxuan
    Gao, Xiaolan
    Li, Ge
    SMALL, 2023, 19 (50)
  • [37] Superhydrophilic Heteroporous MoS2/Ni3S2 for Highly Efficient Electrocatalytic Overall Water Splitting
    Li, Fang
    Zhang, Dafeng
    Xu, Rong-Chen
    Fu, Wen-Fu
    Lv, Xiao-Jun
    ACS APPLIED ENERGY MATERIALS, 2018, 1 (08): : 3929 - 3936
  • [38] Iron and vanadium co-doped Ni3S2 flower like nanosheets as an efficient electrocatalysts for water splitting
    Krishnamurthy, P.
    Kumar, Anuj
    Alqarni, Sondos Abdullah
    Silambarasan, S.
    Maiyalagan, T.
    SURFACES AND INTERFACES, 2024, 44
  • [39] Highly Efficient Water Splitting with Pd-Integrated NiAl-LDH Nanosheets as Bifunctional Electrocatalysts
    Kalusulingam, Rajathsing
    Mariyaselvakumar, Mariyamuthu
    Antonyraj, Churchil Angel
    Mathi, Selvam
    Mikhailova, Tatiana S.
    Khubezhov, Soslan A.
    Pankov, Ilya V.
    Srinivasan, Kannan
    Myasoedova, Tatiana N.
    ENERGY & FUELS, 2023, 37 (17) : 13319 - 13330
  • [40] Flower-like NiFe Oxide Nanosheets on Ni Foam as Efficient Bifunctional Electrocatalysts for the Overall Water Splitting
    Li, Bo
    Feng, Qin
    Jiang, Feng
    Peng, Lizhi
    Liu, Tianfu
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2019, 14 (05): : 4878 - 4890