Decomposable Product Systems Associated to Non-stationary Poisson Processes

被引:1
|
作者
Shanmugasundaram, Sundar [1 ]
机构
[1] Inst Math Sci HBNI, CIT Campus, Chennai 600113, Tamil Nadu, India
关键词
SEMIGROUPS;
D O I
10.1093/imrn/rnac158
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let P be a closed convex cone in R-d, which we assume is pointed and spanning, i.e, P boolean AND -P = {0} and P - P = R-d. We demonstrate that, when d >= 2, in contrast to the one-parameter situation, Poisson processes on R-d, with intensity measure absolutely continuous with respect to the Lebesgue measure, restricted to P-invariant closed subsets, provide us with a source of examples of decomposable E-0-semigroups that are not always CCR f lows.
引用
收藏
页码:11432 / 11452
页数:21
相关论文
共 50 条
  • [22] Riemann Integral Operator for Stationary and Non-Stationary Processes
    Alexandrovich, I. M.
    Lyashko, S. I.
    Sydorov, M. V. -S.
    Lyashko, N. I.
    Bondar, O. S.
    CYBERNETICS AND SYSTEMS ANALYSIS, 2021, 57 (06) : 918 - 926
  • [23] Information Theory for Non-Stationary Processes with Stationary Increments
    Granero-Belinchon, Carlos
    Roux, Stephane G.
    Garnier, Nicolas B.
    ENTROPY, 2019, 21 (12)
  • [24] On the identification of non-stationary linear processes
    Bouzeghoub, MC
    Ellacott, SW
    Easdown, A
    Brown, M
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2000, 31 (03) : 273 - 286
  • [25] Riemann Integral Operator for Stationary and Non-Stationary Processes
    I. M. Alexandrovich
    S. I. Lyashko
    M. V.-S. Sydorov
    N. I. Lyashko
    O. S. Bondar
    Cybernetics and Systems Analysis, 2021, 57 : 918 - 926
  • [26] Modelling a non-stationary BINAR(1) Poisson process
    Khan, Naushad Mamode
    Sunecher, Yuvraj
    Jowaheer, Vandna
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2016, 86 (15) : 3106 - 3126
  • [27] Pattern grouping algorithm and de-convolution filtering of non-stationary correlated Poisson processes
    Tetko, IV
    Villa, AEP
    NEUROCOMPUTING, 2001, 38 : 1709 - 1714
  • [28] Compound Poisson limit theorems for high-level exceedances of some non-stationary processes
    Bellanger, L
    Perera, G
    BERNOULLI, 2003, 9 (03) : 497 - 515
  • [29] STAFFING A SERVICE SYSTEM WITH NON-POISSON NON-STATIONARY ARRIVALS
    He, Beixiang
    Liu, Yunan
    Whitt, Ward
    PROBABILITY IN THE ENGINEERING AND INFORMATIONAL SCIENCES, 2016, 30 (04) : 593 - 621
  • [30] NUMERICAL SIMULATION OF STATIONARY AND NON-STATIONARY GAUSSIAN RANDOM PROCESSES
    FRANKLIN, JN
    SIAM REVIEW, 1965, 7 (01) : 68 - &