A new Petrov-Galerkin immersed finite element method for elliptic interface problems with non-homogeneous jump conditions

被引:0
|
作者
Tang, Zhongliang [1 ]
Zheng, Yu [1 ]
Wang, Liqun [2 ]
Wang, Quanxiang [1 ]
机构
[1] Nanjing Agr Univ, Coll Sci, Nanjing 210095, Peoples R China
[2] China Univ Petr, Coll Sci, Beijing 102249, Peoples R China
基金
中国国家自然科学基金;
关键词
Cartesian mesh; Immersed finite element; Petrov-Galerkin; Three-dimensional interface problems; EQUATIONS; APPROXIMATION; FLOW;
D O I
10.1007/s10665-023-10286-3
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, we develop a Petrov-Galerkin immersed finite element method for solv-ing elliptic interface problems in two and three dimensions. By introducing additional immersed finite element function on interface element, the non-homogeneous jump conditions can be dealt easily. In various test cases, including large jump in the coeffi-cients and complex interfaces, the method can provide nearly second-order accuracy in the L-2 and L-8 norm.
引用
收藏
页数:24
相关论文
共 50 条
  • [41] A Numerical Method for Solving Elliptic Interface Problems Using Petrov-Galerkin Formulation with Adaptive Refinement
    Wang, Liqun
    Hou, Songming
    Shi, Liwei
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2018, 2018
  • [42] The adaptive immersed interface finite element method for elliptic and Maxwell interface problems
    Chen, Zhiming
    Xiao, Yuanming
    Zhang, Linbo
    JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (14) : 5000 - 5019
  • [43] A new stabilized finite element method for reaction-diffusion problems: The source-stabilized Petrov-Galerkin method
    Ilinca, F.
    Hetu, J. -F.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2008, 75 (13) : 1607 - 1630
  • [44] The Discontinuous Petrov-Galerkin methodology for the mixed Multiscale Finite Element Method
    Cecot, Witold
    Oleksy, Marta
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2021, 95 : 28 - 40
  • [45] Application of direct meshless local Petrov-Galerkin method for numerical solution of stochastic elliptic interface problems
    Abbaszadeh, Mostafa
    Dehghan, Mehdi
    Khodadadian, Amirreza
    Heitzinger, Clemens
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2022, 38 (05) : 1271 - 1292
  • [46] An immersed weak Galerkin method for elliptic interface problems
    Mu, Lin
    Zhang, Xu
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 362 : 471 - 483
  • [47] A finite element enrichment technique by the meshless local petrov-galerkin method
    Ferronato, M.
    Mazzia, A.
    Pini, G.
    CMES - Computer Modeling in Engineering and Sciences, 2010, 62 (02): : 205 - 222
  • [48] A Finite Element enrichment technique by the Meshless Local Petrov-Galerkin method
    Ferronato, M.
    Mazzia, A.
    Pini, G.
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2010, 62 (02): : 205 - 223
  • [49] Locally Conservative Immersed Finite Element Method for Elliptic Interface Problems
    Jo, Gwanghyun
    Kwak, Do Y.
    Lee, Young-Ju
    JOURNAL OF SCIENTIFIC COMPUTING, 2021, 87 (02)
  • [50] An immersed finite element method for elliptic interface problems in three dimensions
    Guo, Ruchi
    Lin, Tao
    JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 414