Contactless blood oxygen estimation from face videos: A multi-model fusion method based on deep learning

被引:9
|
作者
Hu, Min [1 ]
Wu, Xia [1 ]
Wang, Xiaohua [1 ]
Xing, Yan [2 ]
An, Ning [1 ,3 ]
Shi, Piao [1 ]
机构
[1] Hefei Univ Technol, Key Lab Knowledge Engn Big Data, Anhui Prov Key Lab Affect Comp & Adv Intelligent M, Minist Educ, Hefei 230601, Anhui, Peoples R China
[2] Hefei Univ Technol, Sch Math, Hefei 230601, Anhui, Peoples R China
[3] Hefei Univ Technol, Natl Smart Eldercare Int S&T Cooperat Base, Hefei 230601, Anhui, Peoples R China
关键词
Estimation; Remote photo-plethysmography; Deep learning; Residual network; Coordinate attention; Multi-model fusion; PULSE; NONCONTACT; SIGNAL;
D O I
10.1016/j.bspc.2022.104487
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Blood Oxygen (SpO2), a key indicator of respiratory function, has received increasing attention during the COVID-19 pandemic. Clinical results show that patients with COVID-19 likely have distinct lower SpO2 before the onset of significant symptoms. Aiming at the shortcomings of current methods for monitoring SpO2 by face videos, this paper proposes a novel multi-model fusion method based on deep learning for SpO2 estimation. The method includes the feature extraction network named Residuals and Coordinate Attention (RCA) and the multimodel fusion SpO2 estimation module. The RCA network uses the residual block cascade and coordinate attention mechanism to focus on the correlation between feature channels and the location information of feature space. The multi-model fusion module includes the Color Channel Model (CCM) and the Network-Based Model(NBM). To fully use the color feature information in face videos, an image generator is constructed in the CCM to calculate SpO2 by reconstructing the red and blue channel signals. Besides, to reduce the disturbance of other physiological signals, a novel two-part loss function is designed in the NBM. Given the complementarity of the features and models that CCM and NBM focus on, a Multi-Model Fusion Model(MMFM) is constructed. The experimental results on the PURE and VIPL-HR datasets show that three models meet the clinical requirement (the mean absolute error <= 2%) and demonstrate that the multi-model fusion can fully exploit the SpO2 features of face videos and improve the SpO2 estimation performance. Our research achievements will facilitate applications in remote medicine and home health.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Conventional and deep learning methods in heart rate estimation from RGB face videos
    Helwan, Abdulkader
    Azar, Danielle
    Ma'aitah, Mohamad Khaleel Sallam
    PHYSIOLOGICAL MEASUREMENT, 2024, 45 (02)
  • [22] A multi-feature-based multi-model fusion method for state of health estimation of lithium-ion batteries
    Lin, Mingqiang
    Wu, Denggao
    Meng, Jinhao
    Wu, Ji
    Wu, Haitao
    JOURNAL OF POWER SOURCES, 2022, 518
  • [23] Online Detection Method for Transformer Faults Based on Multi-model Fusion
    Wang Y.
    Yu J.
    Peng P.
    Xie J.
    Yi J.
    Tao Z.
    Gaodianya Jishu/High Voltage Engineering, 2023, 49 (08): : 3415 - 3424
  • [24] A novel monitoring method based on multi-model information extraction and fusion
    Li, Zhichao
    Shen, Mingxue
    Tian, Li
    Yan, Xuefeng
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (04)
  • [25] Energy efficiency evaluation method based on multi-model fusion strategy
    Meng Fansheng
    Li Bin
    Yang Donghui
    Yue Zenglei
    Liu Zhi
    Cluster Computing-The Journal of Networks Software Tools and Applications, 2016, 19 (04): : 1937 - 1949
  • [26] American License Plate Recognition Algorithm Based on Deep Multi-Model Fusion
    Cai, Ying
    Zhang, Yuexin
    Huang, Jie
    2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 6432 - 6437
  • [27] Energy efficiency evaluation method based on multi-model fusion strategy
    Meng Fansheng
    Li Bin
    Yang Donghui
    Yue Zenglei
    Liu Zhi
    Cluster Computing, 2016, 19 : 1937 - 1949
  • [28] Parameters tuning of multi-model database based on deep reinforcement learning
    Ye, Feng
    Li, Yang
    Wang, Xiwen
    Nedjah, Nadia
    Zhang, Peng
    Shi, Hong
    JOURNAL OF INTELLIGENT INFORMATION SYSTEMS, 2023, 61 (01) : 167 - 190
  • [29] A multi-model architecture based on deep learning for aircraft load prediction
    Chenxi Sun
    Hongyan Li
    Hongna Dui
    Shenda Hong
    Yongyue Sun
    Moxian Song
    Derun Cai
    Baofeng Zhang
    Qiang Wang
    Yongjun Wang
    Bo Liu
    Communications Engineering, 2 (1):
  • [30] Parameters tuning of multi-model database based on deep reinforcement learning
    Feng Ye
    Yang Li
    Xiwen Wang
    Nadia Nedjah
    Peng Zhang
    Hong Shi
    Journal of Intelligent Information Systems, 2023, 61 : 167 - 190