Highly Transparent, Scalable, and Stable Perovskite Solar Cells with Minimal Aesthetic Compromise

被引:34
|
作者
Liu, Tianran [1 ,2 ]
Zhao, Xiaoming [1 ]
Wang, Ping [2 ,3 ]
Burlingame, Quinn C. [3 ]
Hu, Junnan [2 ]
Roh, Kwangdong [2 ,4 ]
Xu, Zhaojian [2 ]
Rand, Barry P. [2 ,3 ]
Chen, Minjie [2 ,3 ]
Loo, Yueh-Lin [1 ]
机构
[1] Princeton Univ, Dept Chem & Biol Engn, Princeton, NJ 08544 USA
[2] Princeton Univ, Dept Elect Engn, Princeton, NJ 08544 USA
[3] Princeton Univ, Andlinger Ctr Energy & Environm, Princeton, NJ 08544 USA
[4] Ewha Womans Univ, Dept Phys, Seoul 03760, South Korea
基金
美国国家科学基金会;
关键词
color neutrality; inorganic perovskites; stability; thermal evaporation; transparent solar cells; HOLE-TRANSPORT MATERIAL; PARASITIC ABSORPTION; ENERGY PERFORMANCE; SMART WINDOWS; EFFICIENT; SEMITRANSPARENT; STABILITY; OXIDE; PHOTOVOLTAICS; TEMPERATURE;
D O I
10.1002/aenm.202200402
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Transparent photovoltaics (TPVs) can be integrated into the surfaces of buildings and vehicles to provide point-of-use power without impacting aesthetics. Unlike TPVs that target the photon-rich near-infrared portion of the solar spectrum, TPVs that harvest ultraviolet (UV) photons can have significantly higher transparency and color neutrality, offering a superior solution for low-power electronics with stringent aesthetic tolerance. In addition to being highly transparent and colorless, an ideal UV-absorbing TPV should also be operationally stable and scalable over large areas while still outputting sufficient power for its specified application. None of today's TPVs meet all these criteria simultaneously. Here, the first UV-absorbing TPV is demonstrated that satisfies all four criteria by using CsPbCl2.5Br0.5 as the absorber. By precisely tuning the halide ratio during thermal co-evaporation, high-quality large-area perovskite films can be accessed with an ideal absorption cutoff for aesthetic performance. The resulting TPVs exhibit a record average visible transmittance of 84.6% and a color rendering index of 96.5, while maintaining an output power density of 11 W m(-2) under one-sun illumination. Further, the large-area prototypes up to 25 cm(2) are demonstrated, that are operationally stable with extrapolated lifetimes of >20 yrs under outdoor conditions.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Scalable fabrication of perovskite solar cells
    Zhen Li
    Talysa R. Klein
    Dong Hoe Kim
    Mengjin Yang
    Joseph J. Berry
    Maikel F. A. M. van Hest
    Kai Zhu
    Nature Reviews Materials, 3
  • [22] NiO/Perovskite Heterojunction Contact Engineering for Highly Efficient and Stable Perovskite Solar Cells
    Zhang, Bingjuan
    Su, Jie
    Guo, Xing
    Zhou, Long
    Lin, Zhenhua
    Feng, Liping
    Zhang, Jincheng
    Chang, Jingjing
    Hao, Yue
    ADVANCED SCIENCE, 2020, 7 (11)
  • [23] Scalable fabrication of perovskite solar cells
    Li, Zhen
    Klein, Talysa R.
    Kim, Dong Hoe
    Yang, Mengjin
    Berry, Joseph J.
    van Hest, Maikel F. A. M.
    Zhu, Kai
    NATURE REVIEWS MATERIALS, 2018, 3 (04):
  • [24] Layered perovskite materials: key solutions for highly efficient and stable perovskite solar cells
    Hanmandlu, Chintam
    Singh, Anupriya
    Boopathi, Karunakara Moorthy
    Lai, Chao-Sung
    Chu, Chih-Wei
    REPORTS ON PROGRESS IN PHYSICS, 2020, 83 (08)
  • [25] Highly Flexible and Transparent Polylactic Acid Composite Electrode for Perovskite Solar Cells
    Lu, Zheng
    Lou, Yanhui
    Ma, Peipei
    Zhu, Kaiping
    Cong, Shan
    Wang, Chen
    Su, Xiaodong
    Zou, Guifu
    SOLAR RRL, 2020, 4 (10):
  • [26] Inverted Perovskite Solar Cells: The Emergence of a Highly Stable and Efficient Architecture
    Principe, Joana
    Duarte, Vera C. M.
    Andrade, Luisa
    ENERGY TECHNOLOGY, 2022, 10 (04)
  • [27] Defect Engineering toward Highly Efficient and Stable Perovskite Solar Cells
    Li, Bowei
    Ferguson, Victoria
    Silva, S. Ravi P.
    Zhang, Wei
    ADVANCED MATERIALS INTERFACES, 2018, 5 (22):
  • [28] Intragrain impurity annihilation for highly efficient and stable perovskite solar cells
    Cai, Songhua
    Li, Zhipeng
    Zhang, Yalan
    Liu, Tanghao
    Wang, Peng
    Ju, Ming-Gang
    Pang, Shuping
    Lau, Shu Ping
    Zeng, Xiao Cheng
    Zhou, Yuanyuan
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [29] Pseudohalide anion engineering for highly efficient and stable perovskite solar cells
    Chu, Liang
    MATTER, 2021, 4 (06) : 1762 - 1764
  • [30] Inhibition of Ion Migration for Highly Efficient and Stable Perovskite Solar Cells
    Zhong, Yang
    Yang, Jia
    Wang, Xueying
    Liu, Yikun
    Cai, Qianqian
    Tan, Licheng
    Chen, Yiwang
    ADVANCED MATERIALS, 2023, 35 (52)