Spatiotemporal Variation of Fractional Vegetation Cover and Its Response to Climate Change and Topography Characteristics in Shaanxi Province, China

被引:6
|
作者
Li, Yuanyuan [1 ]
Sun, Jingyan [1 ]
Wang, Mingzhu [1 ]
Guo, Jinwei [1 ]
Wei, Xin [2 ]
Shukla, Manoj K. [3 ]
Qi, Yanbing [1 ]
机构
[1] Northwest A&F Univ, Coll Nat Resources & Environm, Yangling 712100, Peoples R China
[2] Northwest A&F Univ, Coll Humanities & Social Dev, Yangling 712100, Peoples R China
[3] New Mexico State Univ, Coll Agr Consumer & Environm Sci, Dept Plant & Environm Sci, Las Cruces, NM 88001 USA
来源
APPLIED SCIENCES-BASEL | 2023年 / 13卷 / 20期
关键词
FVC variation; time lag duration; climate change; topography; Shaanxi Province; ECOLOGY; LAND;
D O I
10.3390/app132011532
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Since the beginning of the 21st century in Shaanxi Province, China, ecological restoration has increased fractional vegetation cover (FVC) and decreased soil and water erosion. The climate and topography will be critical factors for maintaining vegetation coverage in the future. Based on the moderate resolution imaging spectroradiometer (MODIS) normalized difference vegetation index (NDVI) data, we monitored FVC variations in Shaanxi Province, China, as well as in three subregions of the Loess Plateau (LOP), Qinling-Bashan Mountain (QBM), and Guanzhong Plain (GZP). Using Sen+Mann-Kendall, correlation analysis, and geodetector methods, we detected trends and responses to climate change and topographical characteristics in Shaanxi Province from 2000 to 2018. The results indicated that 73.86% of the area in Shaanxi Province exhibited an increasing FVC with a growth rate of 0.0026 year(-1) from 2000 to 2018. The FVC in the three subregions varied, as QBM (87.24-91.47%) > GZP (47.45-66.93%) > LOP (36.33-49.74%), which displayed a significant increase, slight increase, and slight decrease, respectively. The variation of FVC was significantly positively correlated with climate factors (precipitation, temperature, sunshine duration) at monthly and seasonal scales. The time-lag duration between FVC and climate factors was 1-3 months except for the conjunctional areas of GZP with the LOP and QBM, which exhibited a time-lag of 5-6 months. Topographically, the landform of hills had the highest FVC increase at an altitude of 500-1500 m and a slope of 2 degrees-6 degrees. The dominant driving factors affecting FVC variation in Shaanxi Province and LOP area were climatic factors. In the QBM area, the dominant factors were related to topography (relief, elevation, slope), whereas in the GZP area, they were relief and sunshine duration. We can conclude that local topography characteristics are important in implementing revegetation projects because they strongly influence water, temperature, and sunshine redistribution.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] Spatiotemporal Variation of Vegetation Productivity and Its Feedback to Climate Change in Northeast China over the Last 30 Years
    Hu, Ling
    Fan, Wenjie
    Yuan, Wenping
    Ren, Huazhong
    Cui, Yaokui
    REMOTE SENSING, 2021, 13 (05) : 1 - 17
  • [42] Study on the Impact of Land Use and Climate Change on the Spatiotemporal Evolution of Vegetation Cover in Chongqing, China
    Liang, Shuai
    Xu, Dandan
    Luo, Danni
    Xiao, Anjing
    Yuan, Xinyue
    ATMOSPHERE, 2025, 16 (01)
  • [43] Response of Vegetation Productivity to Climate Change and Human Activities in the Shaanxi–Gansu–Ningxia Region, China
    Haixin Liu
    Anbing Zhang
    Tao Jiang
    Anzhou Zhao
    Yuling Zhao
    Dongli Wang
    Journal of the Indian Society of Remote Sensing, 2018, 46 : 1081 - 1092
  • [44] Spatiotemporal Variation in Vegetation Growth Status and Its Response to Climate in the Three-River Headwaters Region, China
    He, Chenyang
    Yan, Feng
    Wang, Yanjiao
    Lu, Qi
    REMOTE SENSING, 2022, 14 (19)
  • [45] Untangling the effects of climate change and land use/cover change on spatiotemporal variation of evapotranspiration over China
    Li, Xiaoyang
    Zou, Lei
    Xia, Jun
    Dou, Ming
    Li, Hongwei
    Song, Zhihong
    JOURNAL OF HYDROLOGY, 2022, 612
  • [46] Spatial and Temporal Characteristics of Fractional Vegetation Cover and Its Response to Urbanization in Beijing
    Shi, Na-Na
    Han, Yu
    Wang, Qi
    Xiao, Neng-Wen
    Quan, Zhan-Jun
    Huanjing Kexue/Environmental Science, 2024, 45 (09): : 5318 - 5328
  • [47] Spatiotemporal Change of Vegetation Coverage and its Relationship with Climate Change in Freshwater Marshes of Northeast China
    Xiangjin Shen
    Zhenshan Xue
    Ming Jiang
    Xianguo Lu
    Wetlands, 2019, 39 : 429 - 439
  • [48] Spatiotemporal Change of Vegetation Coverage and its Relationship with Climate Change in Freshwater Marshes of Northeast China
    Shen, Xiangjin
    Xue, Zhenshan
    Jiang, Ming
    Lu, Xianguo
    WETLANDS, 2019, 39 (03) : 429 - 439
  • [49] Vegetation cover change and its response to climate extremes in the Yellow River Basin
    Liu, Jian
    Wei, Lihong
    Zheng, Zhaopei
    Du, Junlin
    SCIENCE OF THE TOTAL ENVIRONMENT, 2023, 905
  • [50] Spatiotemporal Pattern of Vegetation Ecology Quality and Its Response to Climate Change between 2000-2017 in China
    Li, Chao
    Li, Xuemei
    Luo, Dongliang
    He, Yi
    Chen, Fangfang
    Zhang, Bo
    Qin, Qiyong
    SUSTAINABILITY, 2021, 13 (03) : 1 - 23