Towards data-driven predictive control of active upper-body exoskeletons for load carrying

被引:1
|
作者
Souza, Alexandre Oliveira [1 ,2 ]
Grenier, Jordane [2 ]
Charpillet, Francois [1 ]
Maurice, Pauline [1 ]
Ivaldi, Serena [1 ]
机构
[1] Univ Lorraine, CNRS, INRIA, LORIA, F-54000 Nancy, France
[2] Safran Elect & Def, Valence, France
关键词
Exoskeleton; Predictive control; LSTM;
D O I
10.1109/ARSO56563.2023.10187548
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Upper-limb active exoskeletons are a promising technology to reduce musculoskeletal disorders in the context of load-carrying activities. To assist the user on time, it is crucial to predict the assistance torque required for the future intended movement. In this paper, we propose to predict such a torque with predictive models trained on simulated data. We generate exoskeleton sensor data for training learning-based prediction models from human motion capture data. We design a Quadratic Programming control problem for the exoskeleton to track the human body across its movements. From the data generated using this simulation method, we train two torque command prediction methods for transparent control and load carrying. We show that exoskeleton torque command can be predicted with a relative error below 5% at a horizon of 100ms.
引用
收藏
页码:59 / 64
页数:6
相关论文
共 50 条
  • [31] Frequency-Domain Data-Driven Predictive Control
    Meijer, T. J.
    Nouwens, S. A. N.
    Scheres, K. J. A.
    Dolk, V. S.
    Heemels, W. P. M. H.
    IFAC PAPERSONLINE, 2024, 58 (18): : 86 - 91
  • [32] Data-driven Predictive Control for Safe Motion Planning
    Dai, Li
    Huang, Teng
    Gao, Yulong
    Li, Sihang
    Deng, Yunshan
    Xia, Yuanqing
    UNMANNED SYSTEMS, 2025,
  • [33] Predictive Control of Autonomous Greenhouses: A Data-Driven Approach
    Kerkhof, L.
    Keviczky, T.
    2021 EUROPEAN CONTROL CONFERENCE (ECC), 2021, : 1229 - 1235
  • [34] Data-Driven Subspace Predictive Control of a Nuclear Reactor
    Vajpayee, Vineet
    Mukhopadhyay, Siddhartha
    Tiwari, Akhilanand Pati
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2018, 65 (02) : 666 - 679
  • [35] Poisoning Attacks Against Data-Driven Predictive Control
    Yu, Yue
    Zhao, Ruihan
    Chinchali, Sandeep
    Topcu, Ufuk
    2023 AMERICAN CONTROL CONFERENCE, ACC, 2023, : 545 - 550
  • [36] Data-Driven Distributed and Localized Model Predictive Control
    Alonso, Carmen Amo
    Yang, Fengjun
    Matni, Nikolai
    IEEE OPEN JOURNAL OF CONTROL SYSTEMS, 2022, 1 : 29 - 40
  • [37] Robust analysis for data-driven model predictive control
    Jianwang, Hong
    Ramirez-Mendoza, Ricardo A.
    Xiaojun, Tang
    SYSTEMS SCIENCE & CONTROL ENGINEERING, 2021, 9 (01) : 393 - 404
  • [38] Offset-free data-driven predictive control
    Lazar, M.
    Verheijen, P. C. N.
    2022 IEEE 61ST CONFERENCE ON DECISION AND CONTROL (CDC), 2022, : 1099 - 1104
  • [39] Data-driven Adaptive Iterative Learning Predictive Control
    Lv, Yunkai
    Chi, Ronghu
    2017 6TH DATA DRIVEN CONTROL AND LEARNING SYSTEMS (DDCLS), 2017, : 374 - 377
  • [40] Towards data-driven identiication and control of complex networks
    Xiaofan Wang
    NationalScienceReview, 2014, 1 (03) : 335 - 336