Siamese KPConv: 3D multiple change detection from raw point clouds using deep learning

被引:22
|
作者
de Gelis, Iris [1 ,2 ]
Lefevre, Sebastien [2 ]
Corpetti, Thomas [3 ]
机构
[1] Magellium, F-31000 Toulouse, France
[2] Univ Bretagne Sud, IRISA UMR 6074, F-56000 Vannes, France
[3] CNRS, LETG UMR 6554, F-35000 Rennes, France
关键词
3D point clouds; Change detection; Deep learning; Siamese network; 3D Kernel Point Convolution; BUILDING CHANGE DETECTION; SEGMENTATION; CLASSIFICATION;
D O I
10.1016/j.isprsjprs.2023.02.001
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
This study is concerned with urban change detection and categorization in point clouds. In such situations, objects are mainly characterized by their vertical axis, and the use of native 3D data such as 3D Point Clouds (PCs) is, in general, preferred to rasterized versions because of significant loss of information implied by any rasterization process. Yet, for obvious practical reasons, most existing studies only focus on 2D images for change detection purpose. In this paper, we propose a method capable of performing change detection directly within 3D data. Despite recent deep learning developments in remote sensing, to the best of our knowledge there is no such method to tackle multi-class change segmentation that directly processes raw 3D PCs. Thereby, based on advances in deep learning for change detection in 2D images and for analysis of 3D point clouds, we propose a deep Siamese KPConv network that deals with raw 3D PCs to perform change detection and categorization in a single step. Experimental results are conducted on synthetic and real data of various kinds (LiDAR, multi-sensors). Tests performed on simulated low density LiDAR and multi-sensor datasets show that our proposed method can obtain up to 80% of mean of IoU over classes of changes, leading to an improvement ranging from 10% to 30% over the state-of-the-art. A similar range of improvements is attainable on real data. Then, we show that pre-training Siamese KPConv on simulated PCs allows us to greatly reduce (more than 3,000x) the annotations required on real data. This is a highly significant result to deal with practical scenarios. Finally, an adaptation of Siamese KPConv is realized to deal with change classification at PC scale. Our network overtakes the current state-of-the-art deep learning method by 23% and 15% of mean of IoU when assessed on synthetic and public Change3D datasets, respectively. The code is available at the following link: https://github.com/IdeGelis/torch-points3d-SiameseKPConv.
引用
收藏
页码:274 / 291
页数:18
相关论文
共 50 条
  • [21] Rotation Invariant Convolutions for 3D Point Clouds Deep Learning
    Zhang, Zhiyuan
    Hua, Binh-Son
    Rosen, David W.
    Yeung, Sai-Kit
    2019 INTERNATIONAL CONFERENCE ON 3D VISION (3DV 2019), 2019, : 204 - 213
  • [22] Minimal Adversarial Examples for Deep Learning on 3D Point Clouds
    Kim, Jaeyeon
    Hua, Binh-Son
    Duc Thanh Nguyen
    Yeung, Sai-Kit
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 7777 - 7786
  • [23] Deep Hough Voting for 3D Object Detection in Point Clouds
    Qi, Charles R.
    Litany, Or
    He, Kaiming
    Guibas, Leonidas J.
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 9276 - 9285
  • [24] BIM generation from 3D point clouds by combining 3D deep learning and improved morphological approach
    Tang, Shengjun
    Li, Xiaoming
    Zheng, Xianwei
    Wu, Bo
    Wang, Weixi
    Zhang, Yunjie
    AUTOMATION IN CONSTRUCTION, 2022, 141
  • [25] DeepPoint3D: Learning discriminative local descriptors using deep metric learning on 3D point clouds
    Srivastava, Siddharth
    Lall, Brejesh
    PATTERN RECOGNITION LETTERS, 2019, 127 : 27 - 36
  • [26] Deep Scene Flow Learning: From 2D Images to 3D Point Clouds
    Harbin Engineering University, School of Information and Communication Engineering, Heilongjiang, Harbin
    150001, China
    不详
    150001, China
    不详
    ON
    K1N 6N5, Canada
    IEEE Trans Pattern Anal Mach Intell, 2024, 1 (185-208):
  • [27] Automated semantic segmentation of 3D point clouds of railway tunnel using deep learning
    Park, Jeongjun
    Kim, Byung-Kyu
    Lee, Jun S.
    Yoo, Mintaek
    Lee, Il-Wha
    Ryu, Young-Moo
    PROCEEDINGS OF THE ITA-AITES WORLD TUNNEL CONGRESS 2023, WTC 2023: Expanding Underground-Knowledge and Passion to Make a Positive Impact on the World, 2023, : 2844 - 2852
  • [28] Deep Scene Flow Learning: From 2D Images to 3D Point Clouds
    Xiang, Xuezhi
    Abdein, Rokia
    Li, Wei
    El Saddik, Abdulmotaleb
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (01) : 185 - 208
  • [29] Learning Deformable Network for 3D Object Detection on Point Clouds
    Zhang, Wanyi
    Fu, Xiuhua
    Li, Wei
    MOBILE INFORMATION SYSTEMS, 2021, 2021
  • [30] 3D Detection for Occluded Vehicles From Point Clouds
    Zhao, Kun
    Liu, Li
    Meng, Yu
    Liu, Hao
    Gu, Qing
    IEEE INTELLIGENT TRANSPORTATION SYSTEMS MAGAZINE, 2022, 14 (05) : 59 - 71