Significantly enhanced high-temperature capacitive energy storage in cyclic olefin copolymer dielectric films via ultraviolet irradiation

被引:34
|
作者
Bao, Zhiwei [1 ,2 ]
Ding, Song [1 ,2 ]
Dai, Zhizhan [1 ,2 ]
Wang, Yiwei [1 ,2 ]
Jia, Jiangheng [1 ,2 ]
Shen, Shengchun [1 ,2 ]
Yin, Yuewei [1 ,2 ]
Li, Xiaoguang [1 ,2 ,3 ]
机构
[1] Univ Sci & Technol China, Hefei Natl Res Ctr Phys Sci Microscale, Dept Phys, Hefei 230026, Peoples R China
[2] Univ Sci & Technol China, CAS Key Lab Strongly Coupled Quantum Matter Phys, Hefei 230026, Peoples R China
[3] Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Nanjing 210093, Peoples R China
基金
中国国家自然科学基金;
关键词
BREAKDOWN STRENGTH; MECHANICAL-PROPERTIES; UV-IRRADIATION; DENSITY; BLENDS; POLYMERS;
D O I
10.1039/d3mh00078h
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Polymer dielectrics with high operation temperature (similar to 150 degrees C) and excellent capacitive energy storage performance are vital for electric power systems and advanced electronic devices. Here, a very convenient and competitive strategy by preparing ultraviolet-irradiated cyclic olefin copolymer films is demonstrated to be effective in improving the energy storage performance at high temperatures. Compared with the unirradiated film, irradiated films exhibit a higher dielectric constant, higher breakdown strength and stronger mechanical properties as a result of the emergence of the carbonyl group and cross-linking network. Consequently, with a high efficiency above 95%, a superior discharged energy density of similar to 3.34 J cm(-3) is achieved at 150 degrees C, surpassing the current dielectric polymers and polymer nanocomposites. In particular, the energy storage performance remains highly reliable over 20 000 cycles under actual operating conditions (200 MV m(-1) at 150 degrees C) in hybrid electric vehicles. This research offers a valuable pathway to build high-energy-density polymer-based capacitor devices working under harsh environments.
引用
收藏
页码:2120 / 2127
页数:8
相关论文
共 50 条
  • [41] Optimizing the conjugated structure of aromatic polyurea for high-temperature capacitive energy storage
    Zhao, Zhonghua
    Feng, Yang
    Yang, Liuqing
    Zhang, Shuo
    Liu, Xia
    Zhang, Yan
    Li, Mingru
    Li, Shengtao
    APPLIED PHYSICS LETTERS, 2023, 123 (23)
  • [42] Polyimide composites crosslinked by aromatic molecules for high-temperature capacitive energy storage
    Wang, Feng
    Wang, Hao
    Shi, Xiaoming
    Diao, Chunli
    Li, Chaolong
    Li, Weikun
    Liu, Xu
    Zheng, Haiwu
    Huang, Houbing
    Li, Xiaoguang
    CHEMICAL ENGINEERING JOURNAL, 2024, 485
  • [43] Metallized stacked polymer film capacitors for high-temperature capacitive energy storage
    Ren, Weibin
    Yang, Minzheng
    Guo, Mengfan
    Zhou, Le
    Pan, Jiayu
    Xiao, Yao
    Xu, Erxiang
    Nan, Ce-Wen
    Shen, Yang
    ENERGY STORAGE MATERIALS, 2024, 65
  • [44] Curly-Packed Structure Polymers for High-Temperature Capacitive Energy Storage
    Zhou, Chenyi
    Xu, Wenhan
    Zhang, Bing
    Zhang, Yunhe
    Shen, Chen
    Xu, Qinfei
    Liu, Xin
    Bertram, Florian
    Bernholc, Jerzy
    Jiang, Zhenhua
    Shang, Yingshuang
    Zhang, Haibo
    CHEMISTRY OF MATERIALS, 2022, 34 (05) : 2333 - 2341
  • [45] Pendant Group Functionalization of Cyclic Olefin for High Temperature and High-Density Energy Storage
    Shukla, Stuti
    Wu, Chao
    Mishra, Ankit
    Pan, Junkun
    Charnay, Aaron P.
    Khomane, Ashish
    Deshmukh, Ajinkya
    Zhou, Jierui
    Mukherjee, Madhubanti
    Gurnani, Rishi
    Rout, Pragati
    Casalini, Riccardo
    Ramprasad, Rampi
    Fayer, Michael D.
    Vashishta, Priya
    Cao, Yang
    Sotzing, Gregory
    ADVANCED MATERIALS, 2024, 36 (52)
  • [46] Polymer dielectrics sandwiched by medium-dielectric-constant nanoscale deposition layers for high-temperature capacitive energy storage
    Cheng, Sang
    Zhou, Yao
    Li, Yushu
    Yuan, Chao
    Yang, Mingcong
    Fu, Jing
    Hu, Jun
    He, Jinliang
    Li, Qi
    ENERGY STORAGE MATERIALS, 2021, 42 : 445 - 453
  • [47] Enhanced high-temperature energy storage performance in all-organic dielectric films through synergistic crosslinking of chemical and physical interaction
    Dong, Xianhui
    Wang, Yan
    Cao, Yutong
    Li, Na
    Fu, Jiabin
    Wang, Yan
    Yu, Junrong
    Hu, Zuming
    CHEMICAL ENGINEERING JOURNAL, 2024, 500
  • [48] High-temperature dielectric polymer composite for high power energy storage applications
    Yu, Xiangyan
    Yan, Haixue
    SCIENCE CHINA-CHEMISTRY, 2024, 67 (08) : 2425 - 2426
  • [49] High-temperature dielectric polymer composite for high power energy storage applications
    Xiangyan Yu
    Haixue Yan
    ScienceChina(Chemistry), 2024, 67 (08) : 2425 - 2426
  • [50] High-temperature electrical breakdown and energy storage performance of ladderphane copolymer enhanced by molecular bondage and deep trapping
    Song, Xiaofan
    Min, Daomin
    Hao, Yutao
    Gao, Jinghui
    MATERIALS TODAY ENERGY, 2024, 39