Utilizing Machine Learning to Greatly Expand the Range and Accuracy of Bottom-Up Coarse-Grained Models through Virtual Particles

被引:16
|
作者
Sahrmann, Patrick G. [1 ,2 ,3 ,4 ]
Loose, Timothy D. [1 ,2 ,3 ,4 ]
Durumeric, Aleksander E. P. [1 ,2 ,3 ,4 ]
Voth, Gregory A. [1 ,2 ,3 ,4 ]
机构
[1] Univ Chicago, Dept Chem, Chicago, IL 60637 USA
[2] Univ Chicago, Chicago Ctr Theoret Chem, Chicago, IL 60637 USA
[3] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA
[4] Univ Chicago, Inst Biophys Dynam, Chicago, IL 60637 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
MOLECULAR-DYNAMICS SIMULATIONS; GUI MEMBRANE-BUILDER; SOLVENT-FREE; FORCE-FIELD; LIPID-BILAYERS; PHASE; EQUILIBRIUM; POTENTIALS; TEMPERATURE; PERSPECTIVE;
D O I
10.1021/acs.jctc.2c01183
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Coarse-grained (CG) models parametrized using atomistic reference data, i.e., "bottom up" CG models, have proven useful in the study of biomolecules and other soft matter. However, the construction of highly accurate, low resolution CG models of biomolecules remains challenging. We demonstrate in this work how virtual particles, CG sites with no atomistic correspondence, can be incorporated into CG models within the context of relative entropy minimization (REM) as latent variables. The methodology presented, variational derivative relative entropy minimization (VD REM), enables optimization of virtual particle interactions through a gradient descent algorithm aided by machine learning. We apply this methodology to the challenging case of a solvent-free CG model of a 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) lipid bilayer and demonstrate that introduction of virtual particles captures solvent-mediated behavior and higher-order correlations which REM alone cannot capture in a more standard CG model based only on the mapping of collections of atoms to the CG sites.
引用
收藏
页码:4402 / 4413
页数:12
相关论文
共 46 条
  • [11] Bottom-up approach to represent dynamic properties in coarse-grained molecular simulations
    Deichmann, Gregor
    van der Vegt, Nico F. A.
    JOURNAL OF CHEMICAL PHYSICS, 2018, 149 (24):
  • [12] Characterizing the Sequence Landscape of Peptide Fibrillization with a Bottom-Up Coarse-Grained Model
    Pretti, Evan
    Shell, M. Scott
    JOURNAL OF PHYSICAL CHEMISTRY B, 2025,
  • [13] Tribological behaviors of amorphous carbon under water lubrication through a bottom-up coarse-grained method
    Chen, Huan
    Bai, Lichun
    TRIBOLOGY INTERNATIONAL, 2023, 189
  • [14] Bottom-Up Informed and Iteratively Optimized Coarse-Grained Non-Markovian Water Models with Accurate Dynamics
    Klippenstein, Viktor
    van der Vegt, Nico F. A.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2023, : 1099 - 1110
  • [15] Assessing the transferability of common top-down and bottom-up coarse-grained molecular models for molecular mixtures
    Potter, Thomas D.
    Tasche, Jos
    Wilson, Mark R.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2019, 21 (04) : 1912 - 1927
  • [16] A Bottom-Up Coarse-Grained Model for Nucleosome-Nucleosome Interactions with Explicit Ions
    Sun, Tiedong
    Minhas, Vishal
    Mirzoev, Alexander
    Korolev, Nikolay
    Lyubartsev, Alexander P.
    Nordenskiold, Lars
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2022, 18 (06) : 3948 - 3960
  • [17] Coarse-grained simulations of cis- and trans-polybutadiene: A bottom-up approach
    Lemarchand, Claire A.
    Couty, Marc
    Rousseau, Bernard
    JOURNAL OF CHEMICAL PHYSICS, 2017, 146 (07):
  • [18] A hybrid, bottom-up, structurally accurate, Go-like coarse-grained protein model
    Sanyal, Tanmoy
    Mittal, Jeetain
    Shell, M. Scott
    JOURNAL OF CHEMICAL PHYSICS, 2019, 151 (04):
  • [19] A Study of Lipid Transferability of a Bottom-Up Implicit Solvent Coarse-Grained Model for Bilayer Membranes
    Wang, Zun-Jing
    Deserno, Markus
    BIOPHYSICAL JOURNAL, 2010, 98 (03) : 566A - 566A
  • [20] Bottom-up coarse-grained model of microtubule dynamics: A bridge between length- and timescales
    Skora, Tomasz
    Beckett, Daniel
    Bidone, Tamara C.
    BIOPHYSICAL JOURNAL, 2024, 123 (03) : 272A - 272A