Interior Hessian estimates for a class of Hessian type equations

被引:13
|
作者
Chen, Chuanqiang [1 ]
Dong, Weisong [2 ]
Han, Fei [3 ]
机构
[1] Ningbo Univ, Sch Math & Stat, Ningbo 315211, Zhejiang, Peoples R China
[2] Tianjin Univ, Sch Math, Tianjin 300354, Peoples R China
[3] Xinjiang Normal Univ, Sch Math Sci, Urumqi 830054, Xinjiang Uygur, Peoples R China
关键词
Primary; 35B45; Secondary; 35J60; ELLIPTIC-EQUATIONS; DIRICHLET PROBLEM; NEUMANN PROBLEM; PLURISUBHARMONICITY; CONVEXITY; EXISTENCE;
D O I
10.1007/s00526-022-02385-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce some Hessian operators sigma k(eta) and sigma k(eta)/sigma l(eta) by a self-adjoint mapping and the corresponding convex cone (sic)k, and derive interior a priori Hessian estimates for the equ ation sigma k(eta) sigma l(eta) = f (x) in (sic)k with 0 <= l < k < n. As an application we prove Pogorelov type estimates which imply Liouville theorem for such equation.
引用
收藏
页数:15
相关论文
共 50 条